

Web Development
with Blazor

A hands-on guide for .NET developers to build
interactive UIs with C#

Jimmy Engström

BIRMINGHAM—MUMBAI

Web Development with Blazor
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Ashwin Nair
Publishing Product Manager: Ashwin Nair
Senior Editor: Hayden Edwards
Content Development Editor: Abhishek Jadhav
Technical Editor: Saurabh Kadave
Copy Editor: Safis Editing
Language Support Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Roshan Kawale

First published: June 2021

Production reference: 1180621

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80020-872-8

www.packt.com

http://www.packt.com

I dedicate this book to my mom and dad, who got me my first computer,
which got me started with programming.

To my brother, who took the time to teach me how to code, and to my sister,
who helped me with my English homework growing up.

This would never have been possible without you all!

I would also like to dedicate the book to my wife, Jessica, who has helped me
along the way by both reviewing the book and picking up my slack.

Love you!

A huge thanks to the reviewers, who have done a tremendous job reviewing
the book.

– Jimmy Engström

Foreword
It's been about 6 years since I first met Jimmy at an event in Stockholm, where I quickly
noticed his passion for technology, user experience, and pop culture. We spent the
better part of an hour debating Marvel versus DC comic characters and storylines, and I
knew this was a person who studied for both his craft and his hobbies. His presentations
regarding Blazor, HoloLens, and delivering better applications for our users are always
cutting edge and always lead the audience to the best practices for each technology.

The author has been a Microsoft MVP and community leader for almost a decade. The
Swedish developer community has grown under his leadership and benefitted from his
insights to build better applications and services. The Blazm components library that
he wrote and made available is a prime example of helping other developers in his local
community and across the world.

This book has been written for the practical Blazor developer. Clear definitions of why
you need to consider each feature of the framework are followed by examples and clear
solutions that will make you immediately successful. You'll learn by following along with
the very relatable example project of a blog engine. From user interface topics through
API design and security considerations, the blog engine you will build with Blazor and
ASP.NET Core in this book will run in production and can easily serve your blog. The
final chapter of this book is an awesome reference for new and seasoned developers, with
answers to the typical problems that will surface during the lifetime of your application,
and it should be kept as a desktop reference for years to come.

Jeff Fritz

Principal Program Manager at Microsoft and Leader in Live Video Technical Community
Engagement

Contributors

About the author
Jimmy Engström has been developing ever since he was 7 years old and got his first
computer. He loves to be on the cutting edge of technology, trying new things. When he
got wind of Blazor, he immediately realized the potential and adopted it already when it
was in beta. He has been running Blazor in production since it was launched by Microsoft.

His passion for the .NET industry and community has taken him around the world,
speaking about development. Microsoft has recognized this passion by awarding him the
Microsoft Most Valuable Professional award 8 years in a row.

About the reviewers
Jessica Engström is a CEO, teacher, and international speaker who has traveled the world
sharing knowledge about her passions.

She is a Microsoft MVP and has been part of the developer community for many years.
She organizes conferences, events, and hackathons, and runs multiple user groups.
Adapting technology to humans is something that she thinks is important and that is why
UX and presentation skills are her main focus.

Jessica is the co-host of Coding After Work, a podcast and a stream on Twitch.

Bozhi Qian has been a developer and architect for more than 20 years, focusing on .NET
application development, security, and hosting across a variety of Microsoft platforms,
including ASP.NET and Azure.

He is passionate about cloud technologies and holds some Microsoft certifications,
including MCSD and Azure Architecture Specialist.

He lives in Melbourne, Australia, with his wife and children.

Jürgen Gutsch is a .NET-addicted web developer. He has worked with .NET and ASP.NET
since the early versions in 2002. Before that, he wrote server-side web applications using
classic ASP. He is also an active part of the .NET developer community. Jürgen writes for
the dotnetpro magazine, one of the most popular German-speaking developer magazines.
He also publishes articles in English on his blog ASP.NET Hacker and contributes to
several open source projects. Jürgen has been a Microsoft MVP since 2015.

The best way to contact him is using Twitter.

He works as a developer, consultant, and trainer for the digital agency YOO Inc., located
in Basel, Switzerland. YOO Inc. serves national as well as international clients and
specializes in creating custom digital solutions for distinct business needs.

Table of Contents

Preface

Section 1: The Basics

1
Hello Blazor

Technical requirements 4
Preceding Blazor 4
Introducing WebAssembly 5
Introducing .NET 5 8
Introducing Blazor 8
Blazor Server 10

Blazor WebAssembly 12
Blazor WebAssembly versus Blazor
Server 16
WebWindow 16
Blazor Mobile Bindings 16

Summary 17
Further reading 17

2
Creating Your First Blazor App

Technical requirements 20
Setting up your development
environment 20
Windows 20
macOS 21
Linux (or macOS or Windows) 22

Creating our first Blazor
application 23
Creating a Blazor Server application 23

Creating a WebAssembly application 28

Using the command line 33
Creating a Blazor Server project using
the
command line 33

Figuring out the project structure 34
Program.cs 34
Startup 36
Index/_host 39

viii Table of Contents

App 43
MainLayout 44

Bootstrap 44

Summary 46

Section 2: Building an Application with
Blazor

3
Introducing Entity Framework Core

Technical requirements 49
Creating a data project 50
Creating a new project 50
Adding NuGet packages 51
Creating data classes 52
Creating the Database Context 55

Creating a migration 57
Creating an interface 58
Implementing the interface 59

Adding the DbContext to Blazor 66
Summary 68

4
Understanding Basic Blazor Components

Technical requirements 70
Exploring components 70
counter 71
FetchData 73

Learning Razor syntax 77
Razor code blocks 77
Implicit Razor expressions 78
Explicit Razor expressions 78
Expression encoding 79

Directives 79
Understanding dependency injection 82
Figuring out where to put the code 85
Lifecycle events 88

Parameters 90
Cascading parameters 90

Writing our first component 91
Summary 94

5
Creating Advanced Blazor Components

Technical requirements 96
Exploring binding 96

One-way binding 96
Two-way binding 98

Table of Contents ix

Adding Actions and
EventCallback 99
Using RenderFragment 100
ChildContent 101
Default value 101
Building an alert component 101

Exploring the new built-in
component 105
Setting the focus of the UI 105
Influencing HTML head 106
Component virtualization 110

Summary 112

6
Building Forms with Validation

Technical requirements 114
Exploring form elements 114
EditForm 115
InputBase<> 116
InputCheckbox 117
InputDate<TValue> 117
InputNumber<TValue> 117
InputSelect<TValue> 117
InputText 117
InputTextArea 117
InputRadio 117
InputRadioGroup 117

Adding validation 118
ValidationMessage 119
ValidationSummary 119

Custom validation class
attributes 120
Building an admin interface 123
Listing and editing categories 126
Listing and editing tags 129
Listing and editing blog posts 133

Summary 141

7
Creating an API

Technical requirements 143
Creating the service 144
Adding database access 144

Adding the API controller 145

Creating the client 150
Summary 157

8
Authentication and Authorization

Technical requirements 160
Implementing authentication 160
Adding tables to the database 160

Configuring the Blazor Server project 163
Configuring the Blazor WebAssembly
project 170

x Table of Contents

Adding authorization 180
Adding roles from the server 180
Adding roles to the client 181

Adding a role to the database 182

Summary 183

9
Sharing Code
and Resources

Technical requirements 186
Cleaning up the project 186
Setting up the API 187
Moving the components 188
Cleaning up the shared files 191
Adding the API 192

Adding static files 193
CSS versus LESS versus SASS 194
Preparing CSS/SASS 195

Adding CSS to MyBlogServerSide 197
Adding CSS to MyBlogWebAssembly.
Client 198
Making the admin interface more
useable 198
Making the menu more useful 199
Making the blog look like a blog 201
Sharing problems 203

CSS isolation 205
Summary 206

10
JavaScript Interop

Technical requirements 207
Why do we need JavaScript? 208
.NET to JavaScript 209
Global JavaScript (the old way) 209
JavaScript Isolation 210

JavaScript to .NET 213

Static .NET method call 213
Instance method call 214

Implementing an existing
JavaScript library 217
Summary 220

11
Managing State

Technical requirements 222
Storing data on the server side 222
Storing data in the URL 223

Route constraints 224
Using a query string 224
Scenarios that are not that common 224

Table of Contents xi

Implementing browser storage 226
Creating an interface 226
Implementing Blazor Server 227
Implementing WebAssembly 229
Implementing the shared 231

Using an in-memory state

container service 234
Implementing real-time updates on
Blazor Server 235
Implementing real-time updates on
Blazor WebAssembly 238

Summary 243

Section 3: Debug, Test, and Deploy

12
Debugging

Technical requirements 247
Making things break 248
Debugging Blazor Server 248
Debugging Blazor WebAssembly 250
Debugging Blazor WebAssembly

in
the web browser 252
Hot reload (almost the real
thing) 253
Summary 254

13
Testing

Technical requirements 256
What is bUnit? 256
Setting up a test project 257
Mocking the API 259

Writing tests 263
Authentication 265
Testing JavaScript 267

Summary 268

14
Deploy to Production

Technical requirements 269
Continuous delivery options 270
Deploying the database 270
Hosting options 271

Hosting Blazor Server 271
Hosting Blazor WebAssembly 271
Hosting on IIS 272

Summary 272

xii Table of Contents

15
Where to Go
from Here

Technical requirements 273
Learnings from running Blazor
in production 273
Solving memory problems 274
Solving concurrency problems 275
Solving errors 275
Old browsers 276

Next steps 276
The community 276
The components 277

Summary 278
Why subscribe? 279

Other Books You May Enjoy
Index

Preface
Until now, creating interactive web pages meant using JavaScript. But with Blazor,
Microsoft's new way to create .NET web applications, developers can easily build
interactive and rich web applications using C#. This book will guide you through the most
commonly encountered scenarios when starting your journey with Blazor.

Firstly, you'll discover how to leverage the power of Blazor and learn what you can do
with both the server side and WebAssembly. By showing you how all the elements work
together practically, the book will help you solve some of the common roadblocks that
developers face. As you advance, you'll learn how to create server-side Blazor and Blazor
WebAssembly projects, how Razor syntax works, and how to validate forms and create
your own components. The book then introduces you to the key concepts involved in web
development with Blazor, which you will be able to put into practice straight away.

By the end of this Blazor book, you'll have gained the confidence to create and deploy
production-ready Blazor applications.

Who this book is for
The book is for web developers and software developers who want to explore Blazor to
learn how to build dynamic web UIs. This book assumes familiarity with C# programming
and web development concepts.

What this book covers
Chapter 1, Hello Blazor, will teach you about the difference between server-side and client-
side Blazor. You will get an overview of how the technology works and a brief history of
where Blazor comes from. Knowing the structure and differences between the hosting
models is essential for understanding the technology.

Chapter 2, Creating Your First Blazor App, helps you understand how to install and set up
your development environment. You will create your first Blazor app (both server-side
and client-side) and learn about the structure of the project template.

xiv Preface

Chapter 3, Introducing Entity Framework Core, teaches you how to create your database
where you will store your data (blog posts, categories, and tags). You will be using the
dotnet tool to create a new project to get a feel for the tool.

Chapter 4, Understanding Basic Blazor Components, digs deeper into components, life
cycle events, adding parameters, and sharing parameters between components. You will
also create reusable components in this chapter.

Chapter 5, Creating Advanced Blazor Components, digs even deeper into components,
adding functionality such as child components, cascading parameters, and values, and
covering how to use actions and callbacks.

Chapter 6, Building Forms with Validation, takes a look at forms, how to validate forms,
and how to build your own validation mechanism. This chapter will cover the most
common use cases when it comes to handling forms, such as file upload, text, numbers,
and triggering code when checking a checkbox.

Chapter 7, Creating an API, looks at creating an API. When using Blazor WebAssembly,
we need an API to get data.

Chapter 8, Authentication and Authorization, looks at adding authentication and
authorization to Blazor and making sure navigation such as redirecting to a login page
works as expected.

Chapter 9, Sharing Code and Resources, teaches you how it is possible to share code
between client-side and server-side Blazor projects by adding all the things you need into
a shared library. In this chapter, you will build a shared library that can be packaged as a
NuGet package and shared with others.

Chapter 10, JavaScript Interop, explores how you can leverage JavaScript libraries when
using Blazor and make calls from C# to JavaScript. You will also take a look at how
JavaScript is able to call C# functions in our Blazor app.

Chapter 11, Managing State, looks into the different ways of managing state (persisting
data), such as using LocalStorage or just keeping data in memory by using dependency
injection. You will not only cover persisting data in a database, but you will also cover how
dependency injection works on the different project types.

Chapter 12, Debugging, teaches you how to debug your applications and add extended
logging to figure out what's wrong in your application. You will not only look at traditional
debugging but also at debugging C# code directly from within the web browser.

Chapter 13, Testing, looks at automated testing so that you can make sure your
components work as they should (and continue to do so). There is no built-in method to
test Blazor applications but there is a really good community project called bUnit.

Preface xv

Chapter 14, Deploying to Production, will take you through the different things you need
to think about when it comes to running Blazor in production.

Chapter 15, Where to Go from Here, is a short chapter with a call to action, some resources
you can use, and a finale.

To get the most out of this book
I recommend that you read the first few chapters to make sure that you are up to speed
with the basic concepts of Blazor in general. The project we are creating is adapted for
real-world use but some parts are left out, such as proper error handing. You should,
however, get a good grasp of the building blocks of Blazor.

The book focuses on using Visual Studio 2019; that said, though, feel free to use whatever
version you are comfortable with that supports Blazor.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

I would love for you to share your progress while reading this book or in Blazor
development in general. Tweet me @EngstromJimmy.

I hope you have as much fun reading this book as I had writing it.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Web-Development-with-Blazor. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Web-Development-with-Blazor
https://github.com/PacktPublishing/Web-Development-with-Blazor
https://github.com/PacktPublishing/

xvi Preface

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800208728_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "In this case, when the page gets downloaded, it will trigger
a download of the blazor.webassembly.js file."

A block of code is set as follows:

public void ConfigureServices(IServiceCollection services)

{

 services.AddRazorPages();

 services.AddServerSideBlazor();

 services.AddSingleton<WeatherForecastService>();

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

<div class="top-row pl-4 navbar navbar-dark">

 MyBlogServerSide

 <button class="navbar-toggler"

 @onclick="ToggleNavMenu">

Any command-line input or output is written as follows:

dotnet new blazorserver -o BlazorServerSideApp

cd MyBlog.Data

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

https://static.packt-cdn.com/downloads/9781800208728_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800208728_ColorImages.pdf

Preface xvii

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com

Share Your Thoughts
Once you've read Web Development with Blazor, we'd love to hear your thoughts! Scan
the QR code below to go straight to the Amazon review page for this book and share
your feedback.

https://www.amazon.in/review/create-review/
error?asin=1-800-20872-3&

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://www.amazon.in/review/create-review/error?asin=1-800-20872-3&
https://www.amazon.in/review/create-review/error?asin=1-800-20872-3&

The goal of this section is for you to understand the project structure, learn the
differences between different hosting models, and get a brief history of where Blazor
comes from. Also, you will learn how to set up your development environment and
create your first app.

This section includes the following chapters:

• Chapter 1, Hello, Blazor

• Chapter 2, Creating Your First Blazor App

Section 1:
The Basics

1
Hello Blazor

Thank you for picking up your copy of Web Development with Blazor. This book intends
to get you started as quickly and pain-free as possible, chapter by chapter, without you
having to read this book from cover to cover before getting your Blazor on.

This book will start by guiding you through the most common scenarios you'll come
across when you start your journey with Blazor, and will also dive into a few more
advanced scenarios. The goal of this book is to show you what Blazor is – both Blazor
Server and Blazor WebAssembly – how it all works practically, and to help you avoid any
traps along the way.

A common belief is that Blazor is WebAssembly, but WebAssembly is just one way of
running Blazor. Many books, workshops, and blog posts on Blazor focus heavily on
WebAssembly. This book will cover both WebAssembly and server side. There are a few
differences between Blazor Server and Blazor WebAssembly, and I will point those out as
we go along.

This first chapter will explore where Blazor came from, what technologies made Blazor
possible, and the different ways of running Blazor. We will also touch on which type is
best for you.

4 Hello Blazor

In this chapter, we will cover the following topics:

• Preceding Blazor

• Introducing WebAssembly

• Introducing .NET 5

• Introducing Blazor

Technical requirements
It is recommended that you have some knowledge of .NET before you start as this book
is aimed at .NET developers who wants to utilize their skills to make interactive web
applications. However, it's more than possible that you will pick up a few .NET tricks
along the way if you are new to the world of .NET.

Preceding Blazor
You probably didn't get this book to read about JavaScript, but it helps to remember
that we are coming from a pre-Blazor time. I recall that time – the dark times. Many of
the concepts used in Blazor are not that far from the concepts used in many JavaScript
frameworks, so I will start with a brief overview of the challenges we faced.

As developers, we have many different platforms we can develop for, including desktop,
mobile, games, the cloud (or server side), AI, and even IoT. All these platforms have a lot
of different languages to choose from but there is, of course, one more platform: the apps
that run inside the browser.

I have been a web developer for a long time, and I've seen code move from the server
so that it can run within the browser. It has changed the way we develop our apps.
Frameworks such as Angular, React, Aurelia, and Vue have changed the web from having
to reload the whole page to updating just small parts of the page on the fly. This new
on-the-fly update method has enabled pages to load quicker, as the perceived load time
has been lowered (not necessarily the whole page load).

But for many developers, this is an entirely new skill set to learn; that is, switching
between a server (most likely C#, if you are reading this book) to a frontend that's been
developed in JavaScript. Data objects are written in C# in the backend and then serialized
into JSON, sent via an API, and then deserialized into another object written in JavaScript
in the frontend.

Introducing WebAssembly 5

JavaScript used to work differently in different browsers, which jQuery tried to solve
by having a common API that was translated into something the web browser could
understand. Now, the differences between different web browsers are much smaller,
which has rendered jQuery obsolete in many cases.

JavaScript differs a bit from other languages, since it is not object-oriented or typed, for
example. In 2010, Anders Hejlsberg (known for being the original language designer of
C#, Delphi, and Turbo Pascal) started to work on TypeScript, an object-oriented language
that can be compiled/transpiled into JavaScript.

You can use Typescript with Angular, React, Aurelia, and Vue, but in the end, it is
JavaScript that will run the actual code. Simply put, to create interactive web applications
today using JavaScript/TypeScript, you need to switch between languages, and also choose
and keep up with different frameworks.

In this book, we will look at this in another way. Even though we will talk about
JavaScript, our main focus will be on developing interactive web applications using
mostly C#.

Now, we know a bit of history about JavaScript. JavaScript is no longer the only
language that can run within a browser, thanks to WebAssembly, which we will
cover in the next section.

Introducing WebAssembly
In this section, we will look at how WebAssembly works. One way of running Blazor is by
using WebAssembly, but for now, let's focus on what WebAssembly is.

WebAssembly a binary instruction format that is compiled and therefore smaller. It is
designed for native speeds, which means that when it comes to speed, it is closer to C++
than it is to JavaScript. When loading JavaScript, the JS files (or inline) are downloaded,
parsed, optimized, and JIT-compiled; most of those steps are not needed when it comes to
WebAssembly.

WebAssembly has a very strict security model that protects users from buggy or malicious
code. It runs within a sandbox and cannot escape that sandbox without going through the
appropriate APIs. If you want to communicate outside of WebAssembly, for example, by
changing the Document Object Model (DOM) or downloading a file from the web, you
will need to do that with JavaScript interop (more on that later, and don't worry – Blazor
will solve this for us).

To get a bit more familiar with WebAssembly, let's look at some code.

6 Hello Blazor

In this section, we will create an app that sums two numbers and returns the result,
written in C (to be honest, this is about the level of C I'm comfortable with).

We can compile C into WebAssembly in a few easy steps:

1. Navigate to https://wasdk.github.io/WasmFiddle/.

2. Add the following code:

int main() {

 return 1+2;

}

3. Press Build and then Run.

You will see the number 3 being displayed in the output window toward the bottom of the
page, as shown in the following screenshot:

Figure 1.1 – WasmFiddle

WebAssembly is a stack machine language, which means that it uses a stack to perform
its operations.

Consider this code:

1+2

Most compilers (including the one we just used) are going to optimize the code and
simply return 3.

https://wasdk.github.io/WasmFiddle/

Introducing WebAssembly 7

But let's assume that all the instructions should be executed. This is the way WebAssembly
would do things:

1. It will start by pushing 1 onto the stack (instruction: i32.const 1),
followed by pushing 2 onto the stack (instruction: i32.const 2). At this
point, the stack contains 1 and 2.

2. Then, we must execute the add-instruction (i32.add), which will pop (get) the
two top values (1 and 2) from the stack, add them up, and push the new value onto
the stack (3).

This demo shows that we can build WebAssembly from C code. Now, we have C code
that's been compiled into WebAssembly running in our browser.

Other languages
Generally, it is only low-level languages that can be compiled into
WebAssembly (such as C or Rust). However, there are a plethora of languages
that can run on top of WebAssembly. Here is a great collection of some of these
languages: https://github.com/appcypher/awesome-wasm-
langs.

WebAssembly is super performant (near-native speeds) – so performant that game
engines have already adapted this technology for that very reason. Unity, as well as Unreal
Engine, can be compiled into WebAssembly.

Here are a couple of examples of games running on top of WebAssembly:

• Angry Bots (Unity): https://beta.unity3d.com/jonas/AngryBots/

• Doom: https://wasm.continuation-labs.com/d3demo/

This is an amazing list of different WebAssembly projects: https://github.com/
mbasso/awesome-wasm.

This section touched the surface of how WebAssembly works and in most cases, you won't
need to know much more than that. We will dive into how Blazor uses this technology
later in this chapter.

To write Blazor apps, we must leverage the power of .NET 5, which we'll look at next.

https://github.com/appcypher/awesome-wasm-langs
https://github.com/appcypher/awesome-wasm-langs
https://beta.unity3d.com/jonas/AngryBots/
https://wasm.continuation-labs.com/d3demo/
https://github.com/mbasso/awesome-wasm
https://github.com/mbasso/awesome-wasm

8 Hello Blazor

Introducing .NET 5
To build Blazor apps, we must use .NET 5. The .NET team has been working hard on
tightening everything up for us developers for years. They have been making everything
simpler, smaller, cross-platform, and open source – not to mention easier to utilize your
existing knowledge of .NET development.

.NET core was a step of the journey toward a more unified .NET. It allowed Microsoft to
reenvision the whole .NET platform and build it in a completely new way.

There are three different types of .NET runtimes:

• .NET Framework (full .NET)

• .NET Core

• Mono/Xamarin

Different runtimes had different capabilities and performances. This also meant that
creating a .NET core app (for example) had different tooling and frameworks that needed
to be installed.

.NET 5 is the start of our journey toward one single .NET. With this unified toolchain, the
experience to create, run, and so on will be the same across all the different project types.
.NET 5 is still modular in a similar way that we are used to, so we do not have to worry
that merging all the different .NET versions is going to result in a bloated .NET.

Thanks to the .NET platform, you will be able to reach all the platforms we talked about
at the beginning of this chapter (web, desktop, mobile, games, the cloud (or server side),
AI, and even IoT) using only C# and with the same tooling.

Now that you know about some of the surrounding technologies, in the next section,
it's time to introduce the main character of this book: Blazor.

Introducing Blazor
Blazor is an open source web UI SPA framework. That's a lot of buzzwords in the same
sentence, but simply put, it means that you can create interactive SPA web applications
using HTML, CSS, and C# with full support for bindings, events, forms and validation,
dependency injection, debugging, and much more. We will take a look at these this book.

Introducing Blazor 9

In 2017, Steve Sanderson (well-known for creating the Knockout JavaScript framework,
and who works for the ASP.NET team at Microsoft) was about to do a session called Web
Apps can't really do *that*, can they? at the developer conference NDC Oslo.

But Steve wanted to show a cool demo, so he thought to himself, would it be possible to run
C# in WebAssembly? He found an old inactive project on GitHub called Dot Net Anywhere,
which was written in C and used tools (similar to what we just did) to compile the C code
into WebAssembly.

He got a simple console app running inside the browser. For most people, this would
have been an amazing demo, but Steve wanted to take it one step further. He thought, is it
possible to create a simple web framework on top of this?, and went on to see if he could get
the tooling working as well.

When it was time for his session, he had a working sample where he could create a
new project, create a todo-list with great tooling support, and then run the project
inside the browser.

Damian Edwards (the .NET team) and David Fowler (the .NET team) were at the NDC
conferences as well. Steve showed them what he was about to demo, and they described
the event as their heads exploded and their jaws dropped.

And that's how the prototype of Blazor came into existence.

The name Blazor comes from a combination of Browser and Razor (which is the
technology used to combine code and HTML). Adding an L made the name sound better,
but other than that, it has no real meaning or acronym.

There are a couple of different flavors of Blazor Server, including Blazor WebAssembly,
WebWindow, and Mobile Bindings. There are some pros and cons of the different
versions, all of which I will cover in the upcoming sections and chapters.

10 Hello Blazor

Blazor Server
Blazor Server uses SignalR to communicate between the client and the server, as shown in
the following diagram:

Figure 1.2 – Overview of Blazor Server

SignalR is an open source, real-time communication library that will create a connection
between the client and the server. SignalR can use many different means of transporting
data and automatically select the best transport protocol for you, based on your server and
client capabilities. SignalR will always try to use WebSockets, which is a transport protocol
built into HTML5. If WebSockets is not enabled for any reason, it will gracefully fall back
to another protocol.

Blazor is built with reusable UI elements called components (more on components
in Chapter 3, Introducing Entity Framework Core). Each component contains C# code,
markup, and can even include another component. You can use Razor syntax to mix
markup and C# code or even do everything in C# if you wish to. The components can be
updated by user interaction (pressing a button) or by triggers (such as a timer).

The components get rendered into a render tree, a binary representation of the DOM that
contains object states and any properties or values. The render tree will keep track of any
changes compared to the previous render tree, and then send only the things that changed
over SignalR using a binary format to update the DOM.

Introducing Blazor 11

On the client side, JavaScript will receive the changes and update the page accordingly.
If we compare this to traditional ASP.NET, we only render the component itself, not the
entire page, and we only send over the actual changes to the DOM, not the entire page.

There are, of course, some disadvantages to Blazor Server:

• You need to always be connected to the server since the rendering is done on the
server. If you have a bad internet connection, the site might not work. The big
difference compared to a non-Blazor Server site is that a non-Blazor Server site can
deliver a page and then disconnect until it requests another page. With Blazor, that
connection (SignalR) must always be connected (minor disconnections are ok).

• There is no offline/PWA mode since it needs to be connected.

• Every click or page update must do a round trip to the server, which might result
in higher latency. It is important to remember that Blazor Server will only send the
data that was changed. I have not experienced any slow response times.

• Since we have to have a connection to the server, the load on that server increases
and makes scaling difficult. To solve this problem, you can use the Azure SignalR
hub, which will handle the constant connections and let your server concentrate on
delivering content.

• To be able to run it, you have to host it on an ASP.NET Core-enabled server.

However, there are advantages to Blazor Server as well:

• It contains just enough code to establish that the connection is downloaded to the
client so that the site has a small footprint.

• Since we are running on the server, the app can take full advantage of the
server's capabilities.

• The site will work on older web browsers that don't support WebAssembly.

• The code runs on the server and stays on the server; there is no way to decompile
the code.

• Since the code is executed on your server (or in the cloud), you can make direct
calls to services and databases within your organization.

12 Hello Blazor

At my workplace, we already had a large site in place, so we decided to use Blazor Server
for our projects. We had a customer portal and an internal CRM tool. Our approach was
to take one component at a time and convert it into a Blazor component.

We quickly realized that, in most cases, it was faster to remake the component in Blazor
rather than continuing to use ASP.NET MVC and add functionality on top of that. The
User Experience (UX) for the end user became even better as we converted.

The pages loaded faster, we could reload parts of the page as we needed instead of the
whole page, and so on.

We did find that Blazor introduced a new problem, though: the pages became too fast.
Our users didn't understand if data had been saved because nothing happened; things did
happen, but too fast for the users to notice. Suddenly, we had to think more about UX and
how to inform the user that something had changed. This is, of course, a very positive side
effect from Blazor in my opinion.

Blazor Server is not the only way to run Blazor – you can also run it on the client (in the
web browser) using WebAssembly.

Blazor WebAssembly
There is another option: instead of running Blazor on a server, you can run it inside your
web browser using WebAssembly.

As we mentioned previously, there is currently no way to compile C# into WebAssembly.
Instead, Microsoft has taken the mono runtime (which is written in C) and compiled that
into WebAssembly.

The WebAssembly version of Blazor works very similar to the server version, as shown
in the following diagram. We have moved everything off the server and it is now running
within our web browser:

Introducing Blazor 13

Figure 1.3 – Overview of Blazor Web Assembly

A render tree is still created and instead of running the Razor pages on the server, they are
now running inside our web browser. Instead of SignalR, since WebAssembly doesn't have
direct DOM access, Blazor updates the DOM with direct JavaScript interop.

The mono runtime that's compiled into WebAssembly is called dotnet.wasm. The page
contains a small piece of JavaScript that will make sure to load dotnet.wasm. Then,
it will download blazor.boot.json, which is a JSON file containing all the files the
application needs to be able to run, as well as the entry point of the application.

If we look at the default sample site that is created when we start a new Blazor project in
Visual Studio, the Blazor.boot.json file contains 63 dependencies that need to be
downloaded. All the dependencies get downloaded and the app boots up.

As we mentioned previously, dotnet.wasm is the mono runtime that's compiled into
WebAssembly. It runs .NET DLLs – the ones you have written, as well as the ones from
.NET Framework (which is needed to run your app) – inside your browser.

When I first heard of this, I got a bit of a bad taste in my mouth. It's running the whole
.NET runtime inside my browser?! But then, after a while, I realized how amazing that is.
You can use any .NET Standard DLLs and run them in your web browser.

In the next chapter, we will look at exactly what happens and in what order code gets
executed when a WebAssembly app boots up.

14 Hello Blazor

The big concern is the download size of the site. The simple file new sample app is about
1.3 MB in size, which is quite large if you are putting a lot of effort into download size.
What you should remember, though, is that this is more like a Single-Page Application
(SPA) – it is the whole site that has been downloaded to the client. I compared the size to
some well-known sites on the internet; I then only included the JS files for these sites but
also included all the DLLs and JavaScript files for Blazor.

The following is a diagram of my findings:

Figure 1.4 – JavaScript download size for popular sites

Even though the other sites are larger than the sample Blazor site, you should remember
that the Blazor DLLs are compiled and should take up less space than a JavaScript file.
WebAssembly is also faster than JavaScript is.

There are some disadvantages to Blazor WebAssembly:

• Even if we compare it to other large sites, the footprint of a Blazor WebAssembly is
large and there are a large number of files to download.

• To access any on-site resources, you will need to create a Web API to access them.
You cannot access the database directly.

Introducing Blazor 15

• The code is running in the browser, which means that it can be decompiled. This is
something all app developers are used to, but for web developers, it is perhaps not as
common.

There are, of course, some advantages of Blazor WebAssembly as well:

• Since the code is running in the browser, it is easy to create a Progressive Web
App (PWA).

• Since we're not running anything on the server, we can use any kind of backend
server or even a file share (no need for a .NET-compatible server in the backend).

• No round trips mean that you will be able to update the screen faster (that is why
there are game engines that use WebAssembly).

I wanted to put that last advantage to the test! When I was 7 years old, I got my first
computer, a Sinclair ZX Spectrum. I remember that I sat down and wrote the following:

10 PRINT "Jimmy"

20 GOTO 10

That was my code; I made the computer write my name on the screen over and over!

That was the moment I decided that I wanted to become a developer, so that I could make
computers do stuff.

After becoming a developer, I wanted to revisit my childhood and decided I wanted to and
to build a ZX Spectrum emulator. In many ways, the emulator has become my test project,
instead of a simple Hello World, when I encounter new technology. I've had it running on
a Gadgeteer, Xbox One, and even on a HoloLens (to name a few).

But is it possible to run my emulator in Blazor?

It took me only a couple of hours to get the emulator working with Blazor WebAssembly
by leveraging my already built .NET Standard DLL; I only had to write the code that was
specific to this implementation, such as the keyboard and graphics. This is one of the
reasons Blazor (both Server and WebAssembly) is so powerful: it can run libraries that
have already been made. Not only can you leverage your knowledge of C#, but you can
also take advantage of the large ecosystem and .NET community.

You can find the emulator here: https://zxspectrum.azurewebsites.net/.
This is one of my favorite projects to work on, as I keep finding ways to optimize and
improve the emulator.

16 Hello Blazor

Building this type of web application used to only be possible with JavaScript. Now, we
know can use Blazor WebAssembly and Blazor Server, but which one of these new options
is the best?

Blazor WebAssembly versus Blazor Server
Which one should we choose? The answer is, as always, it depends. You have seen the
advantages and disadvantages of both.

If you have a current site that you want to port over to Blazor, I would go for server side;
once you have ported it, you can make a new decision as to whether you want to go for
WebAssembly as well.

If your site runs on a mobile browser or another unreliable internet connection, you might
want to consider going for an offline-capable (PWA) scenario with Blazor WebAssembly
since Blazor Server needs a constant connection.

The startup time for WebAssembly is a bit slow, but there are ways of combining the two
hosting models so that you can have the best of two worlds. We will cover this in Chapter
9, Sharing Code and Resources.

There is no silver bullet when it comes to this question, but read up on the advantages and
disadvantages and see how those affect your project and use cases.

We can run Blazor server side and on the client, but what about desktop and mobile apps?
There are solutions for that as well, by using WebWindow and Mobile Blazor Bindings.

WebWindow
There is an experimental technology called WebWindow, which is an open source project
from Steve Sanderson. It enables us to create Windows applications using Blazor.

WebWindow is outside the scope of this book, but I still want to mention it because it
shows how powerful the technology really is and that there is no end to the possibilities
with Blazor.

You can find out and read more about this project here: https://github.com/
SteveSandersonMS/WebWindow.

Blazor Mobile Bindings
Another example of a project that is outside the scope of this book but is still worth
mentioning is Blazor Mobile Bindings. It's a project that makes it possible to create
mobile applications for iOS and Android by leveraging Blazor.

https://github.com/SteveSandersonMS/WebWindow
https://github.com/SteveSandersonMS/WebWindow

Summary 17

Blazor Mobile Bindings uses Razor syntax just like Blazor does; however, the components
are completely different.

Although Microsoft is behind both Blazor and Blazor Mobile Bindings, we can't
actually share the code between the different web versions (WebAssembly, Server,
or WebWindow).

You can find out and read more about this project here: https://docs.microsoft.
com/en-us/mobile-blazor-bindings/.

As you can see, there are a lot of things you can do with Blazor, and this is just
the beginning.

Summary
In this chapter, you were provided with an overview of the different technologies you can
use with Blazor, such as server side, client side (WebAssembly), desktop, and mobile. This
overview should have helped you make an informed decision about what technology to
choose for your next project.

We then talked about how Blazor was created and its underlying technologies, such as
SignalR and WebAssembly. You also learned about the render tree and how the DOM gets
updated to give you an understanding of how Blazor works under the hood.

In the upcoming chapters, I will walk you through various scenarios to equip you with
the knowledge to handle everything from upgrading an old/existing site, creating a new
server-side site, to creating a new WebAssembly site.

In the next chapter, we'll get our hands dirty by configuring our development environment
and creating and examining our first Blazor App.

Further reading
As a .NET developer, you might be interested in the Uno Platform (https://
platform.uno/), which makes it possible to create a UI in XAML and deploy it to
many different platforms, including WebAssembly.

If you want to see how the ZX Spectrum emulator is built, you can download the source
code here: https://github.com/EngstromJimmy/ZXSpectrum.

https://docs.microsoft.com/en-us/mobile-blazor-bindings/
https://docs.microsoft.com/en-us/mobile-blazor-bindings/
https://platform.uno/
https://platform.uno/
https://github.com/EngstromJimmy/ZXSpectrum

2
Creating Your First

Blazor App
In this chapter, we will set up our development environment so that we can start
developing Blazor apps. We will create our first Blazor app and go through the project
structure, highlighting the differences between Blazor Server and Blazor WebAssembly
projects.

By the end of this chapter, you will have a working development environment and have
created both a Blazor Server app as well as a Blazor WebAssembly app.

In this chapter, we will cover the following:

• Setting up your development environment

• Creating our first Blazor application

• Using the command line

• Figuring out the project structure

20 Creating Your First Blazor App

Technical requirements
We will create a new project (a blog engine) and will continue working on that project
throughout the book.

You can find the source code for this chapter's end result at https://github.
com/PacktPublishing/Web-Development-with-Blazor/tree/master/
Chapter02.

Setting up your development environment
In this book, the focus will be on Windows development and any screenshots are going to
be from Visual Studio (unless stated otherwise). But since .NET 5 is cross-platform,
we will go through how to set up your development environment on Windows, macOS,
and Linux.

The go-to link for all the platforms can be found at https://visualstudio.
microsoft.com/.

From the web page, we can download Visual Studio, Visual Studio Code, or Visual Studio
for Mac.

Windows
On Windows, we have many different options for developing Blazor applications. Visual
Studio 2019 is the most powerful tool we can use.

There are three different editions, which are as follows:

• Community 2019

• Professional 2019

• Enterprise 2019

In short, the Community Edition is free while the others cost money. The Community
Edition does have some limitations and we can compare the different editions here:
https://visualstudio.microsoft.com/vs/compare/.

https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter02
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter02
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter02
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/vs/compare/

Setting up your development environment 21

For this book, we can use any of these versions. Take the following steps:

1. Download Visual Studio 2019 from https://visualstudio.microsoft.
com/vs/. Choose the version that is right for you.

2. Install Visual Studio and during the installation, make sure to select ASP.NET and
web development, as shown in Figure 2.1:

Figure 2.1 – Visual Studio 2019 installation on Windows

We can also use Visual Studio Code to develop Blazor on Windows, but we won't talk
about the installation process for Windows.

macOS
On macOS, we also have some options. Visual Studio for Mac is the most powerful IDE
we can use.

Download Visual Studio for Mac from https://visualstudio.microsoft.com/
vs/mac/ as follows:

1. Click on the Download Visual Studio for Mac button.

2. Open the file that was downloaded.

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/

22 Creating Your First Blazor App

3. Make sure to select .NET Core, as shown in Figure 2.2:

Figure 2.2 – Visual Studio for Mac installation screen

Since Visual Studio Code is a cross-platform software, we can use it here as well.

Linux (or macOS or Windows)
Visual Studio Code is cross-platform, which means we can use it on Linux, macOS,
or Windows.

The different versions are available at https://code.visualstudio.com/
Download.

Once installed, we also need to add two extensions:

1. Open Visual Studio Code and press Ctrl + Shift + X.

2. Search for C# for Visual Studio Code (powered by OmniSharp) and
click Install.

3. Search for JavaScript Debugger (Nightly) and click Install.

To create a project, we can use the .NET CLI, which we will come back to throughout this
book, but we won't do a deep dive into the .NET CLI.

https://code.visualstudio.com/Download
https://code.visualstudio.com/Download

Creating our first Blazor application 23

Now that we have everything all set up, let's create our first app.

Creating our first Blazor application
Throughout the book, we will create a blog engine. There won't be a lot of business logic
that you'll have to learn; the app is simple to understand but will touch base on many of
the technologies and areas you will be faced with when building a Blazor app.

The project will allow visitors to read blog posts and search for them. It will also have an
admin site where you can write a blog post, which will be password-protected.

We will make the same app for both Blazor Server and Blazor WebAssembly, and I will
show you the steps you need to do differently for each platform.

Important note
This guide will use Visual Studio 2019 from now on but other platforms have
similar ways of creating projects.

Creating a Blazor Server application
To start, we will create a Blazor Server application and play around with it:

1. Start Visual Studio 2019 and you will see the following screen:

Figure 2.3 – Visual Studio startup screen

24 Creating Your First Blazor App

2. Press Create a new project, and in the search bar, type blazor.

3. Select Blazor App from the search results and press Next:

Figure 2.4 – The Visual Studio Create a new project screen

Creating our first Blazor application 25

4. Now name the project (this is the hardest part of any project but fear not, I have
done that already!). Name the application MyBlogServerSide, change the
solution name to MyBlog, and press Create:

Figure 2.5 – The Visual Studio Configure your new project screen

26 Creating Your First Blazor App

5. Next, choose what kind of Blazor app we should create. Select .NET 5.0 (Current)
from the drop-down menu and press Create:

Figure 2.6 – Visual Studio screen for creating a new Blazor app

6. Now run the app by pressing Ctrl + F5 (we can also find it under the Debug | Start
without debugging).

Congratulations! You have just created your first Blazor Server application. The site should
look something like in Figure 2.7:

Figure 2.7 – A new Blazor Server server-side application

Explore the site a bit, navigate to Counter and Fetch data to get a feeling for the load
times, and see what the sample application does.

Creating our first Blazor application 27

The sample application has some sample data ready for us to test.

This is a Blazor Server project, which means that for every trigger (for example, a button
press), a command will be sent via SignalR over to the server. The server will rerender the
component and send the changes back over to the client and update the UI.

Press F12 in your browser (to access the developer tools), switch to the Network tab, and
then reload the page (F5). You'll see all the files that get downloaded to the browser.

In Figure 2.8, you can see some of the files that get downloaded:

Figure 2.8 – The Network tab in Microsoft Edge

The browser downloads the page, some CSS, and then blazor.server.js, which
is responsible for setting up the SignalR connection back to the server. It then calls the
negotiate endpoint (to set up the connections).

The call to _blazor?id= (followed by a bunch of letters) is a WebSocket call, which is
the open connection that the client and the server communicate through.

If you navigate to the Counter page and press the Click me button, you will notice that
the page won't be reloaded. The trigger (click event) is sent over SignalR to the server and
the page is rerendered on the server and gets compared to the render tree, and only the
actual change is pushed back over the WebSocket.

28 Creating Your First Blazor App

For a button click, three calls are being made:

1. The page triggers the event (for example, a button click).

2. The server responds with the changes.

3. The page then sends back a response to acknowledge that the Document Object
Model (DOM) has been updated.

In total, there are 490 bytes sent back and forth for a button click.

Now we have created a solution and a Blazor Server project and tried it out. Next up, we
will add a Blazor WebAssembly app to that solution.

Creating a WebAssembly application
Now it is time to take a look at a WebAssembly app. We will create a new Blazor
WebAssembly app and add it to the same solution as the Blazor Server app we just created:

1. Right-click on the MyBlog solution and select Add | New Project.

2. Search for Blazor, select Blazor WebAssembly App in the search results, and
press Next:

Figure 2.9 – The Visual Studio Add a new project screen

Creating our first Blazor application 29

3. Name the app MyBlogWebAssembly. Leave the location as is (Visual Studio will
put it in the right folder by default) and press Create:

Figure 2.10 – The Visual Studio Configure your new project screen

4. On the next screen, select .NET 5.0 (Current) from the dropdown.

5. In this dialog box, two new choices appear that were not available in the Blazor
Server template. The first option is ASP.NET Core hosted, which will create an ASP.
NET backend project and will host the WebAssembly app, which is good if you
want to host web APIs for your app to access; you should check this box.

30 Creating Your First Blazor App

The second option is Progressive Web Application, which will create a
manifest.json file and a service-worker.js file that will make your
app available as a Progressive Web Application (PWA). For this project, leave it
unchecked and then press Create:

Figure 2.11 – Visual Studio screen for creating a new Blazor app

6. Right-click on the MyBlogWebAssembly.Server project and select Set as Startup
Project.

Note:
It can be confusing that this project also has Server in the name.

Since we chose ASP.NET Core hosted when we created the project,
we are hosting the backend for our client side (WebAssembly) in
MyBlogWebAssembly.Server and it is not related to Blazor Server.

Just remember that if you want to run the WebAssembly app, you should run
the MyBlogWebAssembly.Server project; that way we know the backend ASP.
NET Core project will run as well.

7. Run the app by pressing Ctrl + F5 (start without debugging).

Creating our first Blazor application 31

Congratulations! You have just created your first Blazor WebAssembly application, as
shown in Figure 2.12:

Figure 2.12 – A new Blazor WebAssembly app

Explore the site by clicking the Counter and Fetch data links. The app should behave in
the same way as the Blazor Server version.

Press F12 in your browser (to access the developer tools), switch to the Network tab, and
reload the page (F5); you'll see all the files that get downloaded to the browser.

In Figure 2.13, you can see some of the files that got downloaded:

Figure 2.13 – The Network tab in Microsoft Edge

32 Creating Your First Blazor App

In this case, when the page gets downloaded, it will trigger a download of the blazor.
webassembly.js file. Then, blazor.boot.json gets downloaded. Figure 2.14 shows
an example of part of blazor.boot.json:

Figure 2.14 – Part of the blazor.boot.json file

The most important thing blazor.boot.json contains is the entry assembly, which is
the name of the DLL the browser should start executing. It also contains all the framework
DLLs the app needs to run. Now our app knows what it needs to start up.

The JavaScript will then download dotnet.5.0.*.js, which will download all the
resources mentioned in blazor.boot.json: this is a mix of your code compiled to a
.NET Standard DLL, Microsoft .NET Framework code, and any community or third-party
DLLs you might use. The JavaScript then downloads dotnet.wasm, the Mono runtime
compiled to WebAssembly, which will now start booting up your app.

If you watch closely, you might see some text when you reload your page saying Loading.
Between Loading showing up and the page finishing loading, JSON files, JavaScript,
WebAssembly, and DLLs are downloaded and everything is booting up. According
to Microsoft Edge, it takes 1.8 seconds to do that running in debug mode and with
unoptimized code.

Now we have the base for our project, including a Blazor WebAssembly version and a
Blazor Server version. Throughout this book, we will use Visual Studio but there are
other ways to run your Blazor site, such as using the command line. The command line
is a super powerful tool and in the next section, we will run our Blazor app using the
command line.

Using the command line 33

Using the command line
With .NET 5, you get a super powerful tool called dotnet.exe. Developers that have
used .NET Core before will already be familiar with the tool, but with .NET 5, it is no
longer exclusively for .NET Core developers.

It can do a lot of the things Visual Studio can do, for example, creating projects, adding
and creating NuGet packages, and much more. In the next example, we will create a
Blazor Server project.

Creating a Blazor Server project using the
command line
The following steps are just for demonstrating the power of using the command line. We
will not use this project later in the book, so if you don't want to try it, go ahead and skip
this section. To create a new Blazor Server project, you can use this command:

dotnet new blazorserver -o BlazorServerSideApp

Here, dotnet is the command, and to create a new project, you use the new parameter.

blazorserver is the name of the template and -o is the output folder (in this case, the
project will be created in a subfolder called BlazorServerSideApp).

You can run your Blazor apps using the Dotnet command. Start PowerShell and navigate
to the MyBlogServerSide folder, then type the following command:

Dotnet run

It will compile the code and start a web server running your app:

info: Microsoft.Hosting.Lifetime[0]

 Now listening on: https://localhost:5001

info: Microsoft.Hosting.Lifetime[0]

 Now listening on: http://localhost:5000

info: Microsoft.Hosting.Lifetime[0]

 Application started. Press Ctrl+C to shut down.

info: Microsoft.Hosting.Lifetime[0]

 Hosting environment: Development

info: Microsoft.Hosting.Lifetime[0]

 Content root path:

 D:\Source\B16009\Ch2\MyBlog\MyBlogServerSide

34 Creating Your First Blazor App

If you then launch a web browser and navigate to http://localhost:5000, you will
see your site.

Note: the .NET CLI
The idea is that you should be able to do everything from the command
line. If you prefer working with the command line, you should check out the
.NET CLI; you can read more about the .NET CLI here: https://docs.
microsoft.com/en-us/dotnet/core/tools/.

Let's go back to the Blazor template, which has added a lot of files for us. In the next
section, we will take a look at what Visual Studio has generated for us.

Figuring out the project structure
Now it's time to take a look at the different files and how they may differ in different
projects. Take a look at the code in the two projects we just created (in the Creating our
first Blazor app section) while we go through them.

Program.cs
Program.cs is the first class that gets called. It also differs between Blazor Server and
Blazor WebAssembly.

WebAssembly Program.cs
In the MyBlogWebAssembly.Client project, there is a file called Program.cs and it
looks like this:

public class Program

{

 public static async Task Main(string[] args)

 {

 var builder = WebAssemblyHostBuilder.CreateDefault
 (args);

 builder.RootComponents.Add<App>("#app");

 builder.Services.AddScoped(sp => new HttpClient {

 BaseAddress = new Uri
 (builder.HostEnvironment.BaseAddress) });

https://docs.microsoft.com/en-us/dotnet/core/tools/
https://docs.microsoft.com/en-us/dotnet/core/tools/

Figuring out the project structure 35

 await builder.Build().RunAsync();

 }

}

The Main method is the first method that gets called; it will add app as the root
component, and the whole single-page application site will be rendered inside of the App
component (we will get back to that component later in the chapter).

It adds HttpClient as a scoped dependency. In Chapter 3, Introducing Entity Framework
Core, we will dig deeper into dependency injection, but for now, it is a way to abstract
the creation of objects and types by injecting objects (dependencies) so you don't create
objects inside a page. The objects get passed into the page/classes instead, which will make
testing easier, and the classes don't have any dependencies we don't know about.

The WebAssembly version is running in the browser so the only way it can get data is by
making external calls (to a server, for example); therefore, we need to be able to access
HttpClient. WebAssembly is not allowed to make any direct calls to download data,
therefore HttpClient is a special implementation for WebAssembly that will make
JavaScript interop calls to download data.

As I mentioned before, WebAssembly is running in a sandbox, and to be able to
communicate outside of this sandbox, it needs to go through appropriate JavaScript/
browser APIs.

Blazor Server Program.cs
Blazor Server projects look a bit different (but do pretty much the same thing). In the
MyBlogServerSide project, the Program.cs file looks like this:

public class Program

{

 public static void Main(string[] args)

 {

 CreateHostBuilder(args).Build().Run();

 }

 public static IHostBuilder CreateHostBuilder(string[]
 args) =>

 Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(webBuilder =>

 {

36 Creating Your First Blazor App

 webBuilder.UseStartup<Startup>();

 });

}

Just as with WebAssembly, the Main method is the first thing that gets called. It will call
the CreateDefaultBuilder method, which will hand off everything to the Startup
class. You will notice that we are not registering any services here; it is instead done in the
Startup class.

Startup
The startup file is responsible for hooking up all the services and configuring the app; it is
only available in Blazor Server projects (not in Blazor WebAssembly). In the startup file,
there are a couple of methods, which we will go through one by one.

In the MyBlogServerSide project, we have the Startup.cs file:

public Startup(IConfiguration configuration)

{

 Configuration = configuration;

}

public IConfiguration Configuration { get; }

The Startup method is a constructor that takes an IConfiguration object. Using the
Configuration property, we can access any settings we may need.

The next method is ConfigureServices:

public void ConfigureServices(IServiceCollection services)

{

 services.AddRazorPages();

 services.AddServerSideBlazor();

 services.AddSingleton<WeatherForecastService>();

}

The ConfigureServices method is where we add all the dependencies we need in our
application. In this case, we add RazorPages, which is the pages that run Blazor (these
are the .cshtml files). Then we add ServerSideBlazor, which will give us access to
all the objects we need to run Blazor Server. Then we add WeatherForcastService,
which is used when you navigate to the Forecast page.

Figuring out the project structure 37

Next up we have the Configure method, which configures everything we need:

public void Configure(IApplicationBuilder app,
IWebHostEnvironment env)

{

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

 else

 {

 app.UseExceptionHandler("/Error");

 app.UseHsts();

 }

 app.UseHttpsRedirection();

 app.UseStaticFiles();

 app.UseRouting();

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapBlazorHub();

 endpoints.MapFallbackToPage("/_Host");

 });

}

UseDeveloperExceptionPage will make sure that while we are running in a
development environment, our application will show a developer exception page with
greater detail, which makes it easier to debug the application. If we are not running in
development, it will redirect to an exception handler and show a friendlier error message.

It also configures HTTP Strict Transport Security (HSTS), forcing your application
to use HTTPS, and will make sure that your users don't use any untrusted resources or
certificates. We also make sure that the site redirects to HTTPS to make the site secure.

UseStaticFiles enables downloading static files such as CSS or images.

The different Use* methods add request delegates to the request pipeline or middleware
pipeline. Each request delegate (DeveloperException, httpRedirection,
StaticFiles, and so on) is called consecutively from the top to the bottom and
back again.

38 Creating Your First Blazor App

This is why the exception handler is the first one to be added.

If there is an exception in any of the request delegates that follow, the exception handler
will still be able to handle it (since the request travels back through the pipeline), as shown
in Figure 2.15:

Figure 2.15 – The request middleware pipeline

If any of these request delegates handle the request in the case of a static file, for example,
there is no need to involve routing and the remaining request delegates will not get called.
There is no need to involve routing if the request was for a static file. In some cases, it is
important to add the request delegated in the right order.

Note:
There is more information about this here if you want to dig even further:
https://docs.microsoft.com/en-us/aspnet/core/
fundamentals/middleware/?view=aspnetcore-5.0.

At the end of the Configure method, we hook up routing and add endpoints. We create
an endpoint for the Blazor SignalR hub and if we don't find anything to return, we make
sure that we will call the _host file that will handle routing for the app. When _host has
triggered, the first page of the app will get loaded.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-5.0

Figuring out the project structure 39

Index/_host
The next thing that happens is that the Index or _host file runs. It contains the
information to load the necessary JavaScript.

_Host (Blazor Server)
The Blazor Server project has a _Host.cshtml file that is located in the pages folder. It
is a Razor page, which is not the same thing as a Razor component:

• A Razor page is a way to create views or pages. It can use Razor syntax but cannot
be used as a component (a component can be used as part of a page and inside of
another component).

• A Razor component is a way to build reusable views (called components) that
you can use throughout your app. You can build a Grid component (for example,
a component that renders a table) and use it in your app, or package it as a library
for others to use. However, a component can be used as a page by adding an @ page
directive to your component and it can be called a page (more on that later).

For most Blazor applications, you should only have one .cshtml page; the rest should be
Razor components.

At the top of the page, you will find some @ directives (such as page, namespace,
using, and addTagHelper):

@page "/"

@namespace BlazorTestServerSide.Pages

@using MyBlogServerSide

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

@{

 Layout = null;

}

There are a couple of aspects of this file that are worth noting. The @ directives make
sure to set the URL for the page, add a namespace, add a tag helper, and that we are not
using a Layout page. We will cover directives in Chapter 4, Understanding Basic Blazor
Components.

The reason we do not want a layout for this page is that the layout will be loaded in the
app component.

40 Creating Your First Blazor App

Then we have some standard HTML doctypes, metatags, titles, and styles. The only thing
that is Blazor-specific is the base tag:

<base href="~/" />

It makes sure that your pages will find the Blazor SignalR hub. If you do not have the
base tag, as soon as you navigate to a page within a folder, your site will break because
the relative URL no longer finds the Blazor SignalR hub.

Next, we have the body tag, and it contains the app component:

<component type="typeof(App)" render-mode="ServerPrerendered"
/>

This is where the entire application will be rendered. The App component handles that.
This is also the way you would add a Blazor component into your existing non-Blazor app
using the component tag helper.

It will render a component called App. There are five different render modes:

• The first one is the default ServerPrerendered mode, which will render all
the content on the server and deliver it as part of the content when the page gets
downloaded for the first time. Then it will hook up the Blazor SignalR hub and
make sure your changes will be pushed to and from the server; however, the server
will make another render and push those changes over SignalR. Normally, you
won't notice anything, but if you are using certain events on the server, they may get
triggered twice and make unnecessary database calls, for example.

• The second option is Server, which will send over the whole page and add
placeholders for the components. It then hooks up SignalR and lets the server send
over the changes when it is done (when it has retrieved data from the database, for
example).

• The third option is Static, which will render the component and then disconnect,
which means that it will not listen to events and it won't update the component any
longer. This can be a good option for static data.

• The fourth option is WebAssembly, which will render a marker for the
WebAssembly application but not output anything from the component.

• The fifth option is WebAssemblyPrerendered, which will render the
component into static HTML and then bootstrap the WebAssembly app into
that space.

Figuring out the project structure 41

It will make the app feel like it loads faster.

Note:
To dig deeper into options 3 to 5, follow this link: https://docs.
microsoft.com/en-us/aspnet/core/blazor/components/
prerendering-and-integration.

We will not go deeper into those different options.

ServerPrerendered is technically the fastest way to get your page up on the screen;
if you have a page that loads quickly, then this is a good option. If you want your page to
have a perceived fast loading time that shows you content fast and then loads the data
when the server is done getting the data from a database, then Server is a better option.

I prefer the Server option because the site should feel fast. Switching to Server is the
first thing I change when creating a new Blazor site; I'd much rather have the data pop up
a couple of milliseconds later because the page will feel like it loads faster.

In the _host file, there is a small part of the UI that will show if there are any
error messages:

<div id="blazor-error-ui">

 <environment include="Staging,Production">

 An error has occurred. This application may no
 longer respond until reloaded.

 </environment>

 <environment include="Development">

 An unhandled exception has occurred. See browser
 dev tools for details.

 </environment>

 Reload

</div>

I would recommend keeping this error UI (or a variation of it) because JavaScript is
involved in updating the UI. In some cases, your page may break, the JavaScript will stop
running, and the SignalR connection will fail. If that happens, you will get a nice error
message in the JavaScript console. But by having the error UI pop up, you'll know that you
need to check the console.

https://docs.microsoft.com/en-us/aspnet/core/blazor/components/prerendering-and-integration
https://docs.microsoft.com/en-us/aspnet/core/blazor/components/prerendering-and-integration
https://docs.microsoft.com/en-us/aspnet/core/blazor/components/prerendering-and-integration

42 Creating Your First Blazor App

The last thing we will cover on the _host page is also where all the magic happens, the
JavaScript responsible for hooking everything up:

<script src="_framework/blazor.server.js"></script>

The script will create a SignalR connection to the server and is responsible for updating
the DOM from the server and sending triggers back to the server.

Index (WebAssembly)
The WebAssembly project looks pretty much the same.

In the MyBlogWebAssembly.Client project, open the wwwroot/index.html
file. This file is HTML only, so there are no directives at the top like in the Blazor
Server version.

Just like the Blazor Server version, you will find a base tag:

<base href="/" />

Instead a component tag (as with Blazor Server) you'll find a div tag here instead, there
was a line in Program.cs that connects the App component to the div tag (see the
previous Program.cs section):

<div id="app">Loading...</div>

You can replace Loading… with something else if you want to – this is the content that
will be shown while the app is starting.

The error UI looks a bit different as well. There is no difference between development or
production as we have in Blazor Server. Here you only have one way of displaying errors:

<div id="blazor-error-UI">

 An unhandled error has occurred.

 Reload

</div>

Figuring out the project structure 43

Lastly, we have a script tag that loads JavaScript. This makes sure to load all the code
needed for the WebAssembly code to run:

<script src="_framework/blazor.webassembly.js"></script>

Just like how the script for Blazor Server communicates with the backend server and the
DOM, the WebAssembly script communicates between the WebAssembly .NET runtime
and the DOM.

At this point, the app is starting up and the differences between Blazor Server and Blazor
WebAssembly are not there anymore; it is all Razor components from now on. The first
component that will be loaded is the App component.

App
The App component is the same for both Blazor WebAssembly and Blazor Server. It
contains a Router component:

<Router AppAssembly="@typeof(Program).Assembly">

 <Found Context="routeData">

 <RouteView RouteData="@routeData"

 DefaultLayout="@typeof(MainLayout)" />

 </Found>

 <NotFound>

 <LayoutView Layout="@typeof(MainLayout)">

 <p>Sorry, there's nothing at this address.</p>

 </LayoutView>

 </NotFound>

</Router>

This file handles the routing, finding the right component to show (based on the
@page directive). It shows an error message if the route can't be found. In Chapter 8,
Authentication and Authorization, we will make changes to this file when we implement
authentication.

The App component also includes a default layout. The layout can be overridden per
component but usually, you'll have one layout page for your site. In this case, the default
layout is called MainLayout.

44 Creating Your First Blazor App

MainLayout
MainLayout contains the default layout for all components when viewed as a page.
The main layout contains a couple of div tags, one for the sidebar and one for the
main content:

@inherits LayoutComponentBase

<div class="page">

 <div class="sidebar">

 <NavMenu />

 </div>

 <div class="main">

 <div class="top-row px-4">

 <a href="http://blazor.net" target="_blank"
 class="ml-md-auto">About

 </div>

 <div class="content px-4">

 @Body

 </div>

 </div>

</div>

The only things you need in this document are @inherits LayoutComponentBase
and @Body; the rest is just Bootstrap. The @inherits directive inherits from
LayoutComponentBase, which contains all the code to use a layout. @Body is where
the component will be rendered (when viewed as a page).

Bootstrap
Bootstrap is one of the most popular CSS frameworks for developing responsive and
mobile-first websites.

We can find a reference to Bootstrap in the wwwroot\index.html file.

It was created by and for Twitter. You can read more about Bootstrap here: https://
getbootstrap.com/.

https://getbootstrap.com/
https://getbootstrap.com/

Figuring out the project structure 45

Toward the top of the layout, you can see <NavMenu>, which is a Razor component. It is
located in the Shared folder and looks like this:

<div class="top-row pl-4 navbar navbar-dark">

 MyBlogServerSide

 <button class="navbar-toggler"

 @onclick="ToggleNavMenu">

 </button>

</div>

<div class="@NavMenuCssClass" @onclick="ToggleNavMenu">

 <ul class="nav flex-column">

 <li class="nav-item px-3">

 <NavLink class="nav-link" href=""

 Match="NavLinkMatch.All">

 <span class="oi oi-home"

 aria-hidden="true"> Home

 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="counter">

 <span class="oi oi-plus"
 aria-hidden="true"> Counter

 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="fetchdata">

 <span class="oi oi-list-rich"
 aria-hidden="true"> Fetch data

 </NavLink>

</div>

@code {

 private bool collapseNavMenu = true;

46 Creating Your First Blazor App

 private string NavMenuCssClass =>

 collapseNavMenu ? "collapse" : null;

 private void ToggleNavMenu()

 {

 collapseNavMenu = !collapseNavMenu;

 }

}

It contains the left-side menu and is a standard Bootstrap menu. It also has three menu
items and logic for a hamburger menu (if viewed on a phone). This type of nav menu is
usually done with JavaScript but this one is done with CSS and C# solely.

You will find another component, NavLink, which is built into the framework. It will
render an anchor tag but will also check the current route. If you are currently on the same
route/URL as the nav link, it will automatically add a CSS class called active to the tag.

We will run into a couple more built-in components that will help us along the way. There
are also some pages in the template, but we will leave them for now and go through them
in the next chapter when we go into components.

Summary
In this chapter, we got the development environment up and running, and we created
our first Blazor app for both Blazor WebAssembly and Blazor Server. You learned in what
order classes, components, and layouts are called, which will make it easier to follow the
code. We also covered some of the differences between a Blazor Server project versus a
Blazor WebAssembly project.

In the next chapter, we will take a break from Blazor to take a look at Entity Framework
Core 5 and set up our database. If you already know about Entity Framework, you can
skip to Chapter 4, Understanding Basic Blazor Components, where we will go through
components, dig deeper into the components in the template, and then create our
first component.

In this section, you will learn about Razor syntax, validate forms, build and
share components, understand dependency injection, and call JavaScript and C#
from JavaScript.

This section includes the following chapters:

• Chapter 3, Introducing Entity Framework Core

• Chapter 4, Understanding Basic Blazor Components

• Chapter 5, Creating Advanced Blazor Components

• Chapter 6, Building Forms with Validation

• Chapter 7, Creating an API

• Chapter 8, Authentication and Authorization

• Chapter 9, Sharing Code and Resources

• Chapter 10, JavaScript Interop

• Chapter 11, Managing State

Section 2:
Building an

Application with
Blazor

3
Introducing Entity

Framework Core
In this chapter, we will go through Entity Framework and create a database where we can
store our blog posts. Since most applications use data in one form or another, the goal of
this chapter is to be able to use data from our database in our Blazor application. We will
also create an API to access the data.

By the end of this chapter, we will have learned how to use the .NET CLI to create a new
project, add new NuGet packages, and create migrations.

In this chapter, we will cover the following:

• Creating a data project

• Adding DbContext to Blazor

Technical requirements
Make sure you have followed the previous chapters, or use the Ch2 folder as the
starting point.

50 Introducing Entity Framework Core

In this chapter, we will create a database project using Entity Framework Core 5. If you
have no interest in using Entity Framework Core, you can skip this chapter and download
the Ch3 folder from the GitHub repo to get back on track. We are not going to go into
depth when it comes to Entity Framework, but we will cover some of the new features of
Entity Framework Core 5.

You can find the source code for this chapter's end result at https://github.
com/PacktPublishing/Web-Development-with-Blazor/tree/master/
Chapter03.

Creating a data project
To save our blog posts, we will use Entity Framework, which is Microsoft's Object
Relational Mapping (or ORM). It enables developers to work with data using domain-
specific classes and not worry about the underlying database (as tables, columns, and
relations are generated from the classes).

Entity Framework maps classes to the tables in the database. There are two ways to use
Entity Framework:

• The database-first approach: This is when we already have an existing database and
generate classes based on that database.

• The code-first approach: This is when we first write the classes, which will then
generate the database.

For this project, we will use the code-first approach.

Let's create a new data project, using the command line to get a feel for what the dotnet
command can do.

Creating a new project
There are many ways to store the data; for simplicity, we will use an SQLite database while
building the blog. The data will be accessible from both our Blazor WebAssembly project
and the Blazor Server project, so we want to create a new project (not just put the code in
one of the projects we created previously).

We can create a project from within Visual Studio as well (to be honest, that's how I would
do it) but to get to know the .NET CLI, let's do it from command line instead.

To create a new project, follow these steps:

1. Open a PowerShell prompt.

https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter03
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter03
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter03

Creating a data project 51

2. Navigate to the MyBlog folder.

3. Create a class library (classlib) by typing the following command:

dotnet new classlib -o MyBlog.Data

The dotnet tool should now have created a folder called MyBlog.Data.

4. Add the new project to our solution by running the following command:

dotnet sln add MyBlog.Data

It will look for any solution in the current folder. If for any reason we already have a
solution, we need to specify that as well.

The next step is to add the NuGet packages that we need for the project.

Adding NuGet packages
To be able to use Entity Framework Core, we need to add a couple of NuGet packages to
our project:

1. Open PowerShell and navigate to the MyBlog.Data folder:

cd MyBlog.Data

2. Add the Microsoft.EntityFrameworkCore.Tools package to the project
using the following command:

dotnet add package Microsoft.EntityFrameworkCore.Tools

3. Add the Microsoft.EntityFrameworkCore.Sqlite package to the project
with the following command:

dotnet add package Microsoft.EntityFrameworkCore.Sqlite

In this project, I decided to use SQLite so we don't have to install an Microsoft SQL Server
or another database engine. We can, of course, change this package to the database of our
choice; the rest of the tutorial should be the same regardless of the underlying database.

It is worth mentioning that we can use SQL Server Express LocalDB, which is built into
Visual Studio.

The Blazor templates that include authentication will use SQLite if we create a project
using the command line (to be cross-platform), and will use LocalDB if we use Visual
Studio to create our project.

52 Introducing Entity Framework Core

In this case, we want our project to be cross-platform and use SQLite.

The next step is to create the data classes.

Creating data classes
Now we have all the packages we need, we need to create a class for our blog post. To do
that we will go back to Visual Studio:

1. Open the MyBlog solution in Visual Studio (if it is not already open).

We should now have a new project called MyBlog.Data in our solution. We might
get a popup asking if we want to reload the solution; click Reload if so.

2. Right-click on the MyBlog.Data project and select Add | New Folder. Name the
folder Interfaces.

3. Next, we need to create an interface, just so that we don't have to repeat the code
later on. Right-click in the Interfaces folder and select Add | Class. In the list of
different templates, select Interface and name it IMyBlogItem.cs.

4. Open IMyBlogItem.cs and replace its content with the following code:

namespace MyBlog.Data.Interfaces

{

 interface IMyBlogItem

 {

 public int Id { get; set; }

 }

}

The interface only contains one property, which is Id. By having a common
interface with the Id property, we can write generic functions for handling the
saving of objects.

We will add this interface to all the data classes we will create; this is just so that we
won't need to duplicate a lot of code when we start with the API.

5. Now we need to create three data classes. Right-click on MyBlog.Data and select
Add | New Folder. Name the folder Models.

6. Right-click on the Models folder and select Add | Class. Name the class
BlogPost.cs and press Add:

Creating a data project 53

Figure 3.1 – Visual Studio's Add New Item dialog

7. Right-click on the Models folder and select Add | Class. Name the class
Category.cs and press Add.

8. Right-click on the Models folder and select Add | Class. Name the class Tag.cs
and press Add.

9. Open BlogPost.cs and replace the content with the following code:

using System;

using System.Collections.Generic;

using MyBlog.Data.Interfaces;

namespace MyBlog.Data.Models

{

 public class BlogPost : IMyBlogItem

 {

 public int Id { get; set; }

 public string Title { get; set; }

 public string Text { get; set; }

54 Introducing Entity Framework Core

 public DateTime PublishDate { get; set; }

 public Category Category { get; set; }

 public ICollection<Tag> Tags { get; set; }

 }

}

In this class, we define the content of our blog post. We need an Id to identify
the blog post, a title, some text (the article), and a publishing date. We also have a
category property in the class, which is of the Category type. In this case, a
blog post can only have one category. A blog post can also contain zero or more
tags. We define the Tag property with ICollection<Tag>.

10. Open Category.cs and replace the content with the following code:

using System.Collections.Generic;

using MyBlog.Data.Interfaces;

namespace MyBlog.Data.Models

{

 public class Category : IMyBlogItem

 {

 public int Id { get; set; }

 public string Name { get; set; }

 public ICollection<BlogPost> BlogPosts { get;
 set; }

 }

}

The Category class contains Id, Name, and a collection of blog posts. We can
have many blog posts that have the same category, so the category object can have
many blog posts connected to it.

11. Open Tag.cs and replace the content with the following code:

using System;

using System.Collections.Generic;

using MyBlog.Data.Interfaces;

namespace MyBlog.Data.Models

{

Creating a data project 55

 public class Tag : IMyBlogItem

 {

 public int Id {get; set; }

 public string Name { get; set; }

 public ICollection<BlogPost> BlogPosts { get;
 set; }

 }

}

The Tag class contains an Id, Name, and a collection of blog posts. By adding a
collection of blog posts in the Tag class and a collection of tags in the BlogPost
class, Entity Framework will understand that there should be a many-to-many
relationship and will automatically create a reference table that connects the two
tables (BlogPosts and Tags).

This is one of the things that makes code-first such an excellent technology to use;
we as developers can focus on the business objects and how they relate, and Entity
Framework can create the database and the relations between the tables.

Now we have created a couple of classes that we will use. I have kept the complexity of
these classes down to a minimum since we are here to learn about Blazor.

We also need to create a database context, which is a way to access each of these classes (or
tables) in the database.

Creating the Database Context
The Database Context is the class from which we will access the database. This is how we
create one:

1. Right-click on the MyBlog.Data project and select Add | Class. Name the class
MyBlogDBContext.cs.

2. Open the new MyBlogDBContext.cs file and replace the content with the
following code:

using Microsoft.EntityFrameworkCore;

using Microsoft.EntityFrameworkCore.Design;

using MyBlog.Data.Models;

namespace MyBlog.Data

{

56 Introducing Entity Framework Core

 public class MyBlogDbContext : DbContext

 {

 public MyBlogDbContext(DbContextOptions
 <MyBlogDbContext> context) : base(context)

 {

 }

 public DbSet<BlogPost> BlogPosts { get; set; }

 public DbSet<Category> Categories { get; set; }

 public DbSet<Tag> Tags { get; set; }

 }

 public class MyBlogDbContextFactory :
 IDesignTimeDbContextFactory<MyBlogDbContext>

 {

 public MyBlogDbContext CreateDbContext

 (string[] args)

 {

 var optionsBuilder = new
 DbContextOptionsBuilder<MyBlogDbContext>();

 optionsBuilder.UseSqlite("Data Source =

 test.db");

 return new MyBlogDbContext

 (optionsBuilder.Options);

 }

 }

}

There are two classes in this file: MyBlogDbContext and
MyBlogDbContextFactory. MyBlogDbContext is DbContext for
our database, the class that lets us access the database. The second class
MyBlogDbContextFactory is for configuring our database while we are
creating the migrations (we'll get back to migrations in the next step), so it is just
code that will run when we run migrations, never in production.

Creating a data project 57

Important note
Normally, I never have multiple classes in the same file, but in this case
the MyBlogDbContextFactory class is only used when we create
migrations and is the code for configuring our MyBlogDbContext.

In previous versions of Entity Framework Core, we had to manually specify many-to-
many relationships (such as with Tags) in DbContext, or create classes that map the
relationship between the object/tables. In Entity Framework Core 5, we don't even have to
specify that relationship, it is all done for us.

Since BlogPost has a collection of Tags and Tags has a collection of BlogPosts,
Entity Framework will automatically create the table containing the relationship.

Next, we have to create the migration.

Creating a migration
A migration is a piece of code for setting up the database, including creating the database
and creating/updating tables. We can do this from within Visual Studio (or using the
command line, which I think is easier):

1. Start PowerShell and navigate to our MyBlog.Data folder.

2. If this is the first time we start PowerShell, we might need to launch it as an
administrator and run the following command:

Set-ExecutionPolicy -ExecutionPolicy Unrestricted -Scope
LocalMachine

This will make sure we can run commands in PowerShell. Note that we can also use
the VS 2019 Command Prompt instead of PowerShell.

3. To install the Entity Framework tools run the following command:

dotnet tool install --global dotnet-ef

4. Now it is time to create our migration. A migration contains the differences between
the database now (which is an empty database in our case) and the changes we have
done in our model classes and our MyBlogDbContext.

5. To create a migration run the following command:

dotnet ef migrations add InitialDatabaseMigration

58 Introducing Entity Framework Core

We can also use the Package Manager Console inside Visual Studio to do run these
commands. We can get to the Package Manager Console through View | Other
Windows | Package Manager Console.

We are using the dotnet command together with the Entity Framework tool we
installed in step 2 to add a migration called InitialDatabaseMigration.
If we go back to Visual Studio we will see that in the MyBlog.Data
project there is now a Migrations folder containing two files –
MyBlogDbContextModelSnapshot.cs, and one that starts with the date
and ends with _InitialDatabaseMigration.cs. These two files contain
generated code to create the database and tables for our models.

Now we have created our database model and our data models.

The next step is to create a simple API; even though we can access the database directly
when we are running the Blazor Server project, we will make sure to have a small layer
between the Blazor code and database access. This is so that we can reuse our code for
both Blazor WebAssembly and the Blazor Server project.

Creating an interface
In this section, we will create an API. Since we are currently working with Blazor Server,
we can access the database directly, so the API we create here will have a direct connection
to the database:

1. Right-click in the Interfaces folder and select Add | Class.

2. In the list of different templates, select Interface and name it IMyBlogApi.cs.

3. Open IMyBlogApi.cs and replace its content with the following:

using System.Collections.Generic;

using System.Threading.Tasks;

using MyBlog.Data.Models;

namespace MyBlog.Data.Interfaces

{

 public interface IMyBlogApi

 {

 Task<int> GetBlogPostCountAsync();

 Task<List<BlogPost>> GetBlogPostsAsync(int
 numberofposts, int startindex);

Creating a data project 59

 Task<List<Category>> GetCategoriesAsync();

 Task<List<Tag>> GetTagsAsync();

 Task<BlogPost> GetBlogPostAsync(int id);

 Task<Category> GetCategoryAsync(int id);

 Task<Tag> GetTagAsync(int id);

 Task<BlogPost> SaveBlogPostAsync(BlogPost item);

 Task<Category> SaveCategoryAsync(Category item);

 Task<Tag> SaveTagAsync(Tag item);

 Task DeleteBlogPostAsync(BlogPost item);

 Task DeleteCategoryAsync(Category item);

 Task DeleteTagAsync(Tag item);

 }

}

The interface contains all the methods we need to get, save, and delete blog posts,
tags, and categories.

Now we have an interface for the API with the methods we need to list blog posts, tags,
and categories, as well as saving (creating/updating), and deleting them. Next, let's
implement the interface.

Implementing the interface
To implement the interface for the Blazor Server implementation, follow these steps:

1. First, we need to create a class. Right-click on the MyBlog.Data project, select Add |
Class, and name the class MyBlogApiServerSide.cs.

2. Open MyBlogApiServerSide.cs and replace the code with the following:

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

using Microsoft.EntityFrameworkCore;

using Microsoft.EntityFrameworkCore.Internal;

using MyBlog.Data.Interfaces;

60 Introducing Entity Framework Core

using MyBlog.Data.Models;

namespace MyBlog.Data

{

 public class MyBlogApiServerSide : IMyBlogApi

 {

 }

}

We start by adding the namespaces we need and then create a class that implements
the ImyBlogApi interface.

3. Add the following code to MyBlogApiServerSide.cs inside of the class.

IDbContextFactory<MyBlogDbContext> factory;

public MyBlogApiServerSide
 (IDbContextFactory<MyBlogDbContext> factory)

{

 this.factory = factory;

}

To access the data we will add our DbContext, but we won't add it directly. We will
use a DbContextFactory; it is recommended for Blazor to use the data contexts
in a unit of work, which means that we should create the data context and then
dispose of it for every data access we do.

DbContext is not thread-safe (which means that if multiple threads access the
same DbContext, we will experience problems such as exceptions when running
more than one query at a time). Luckily the overhead of creating a new object is
quite small and there is a class, DbContextFactory, that will help us with that.

We first create a private IDbContextFactory and use our data context as a
generic parameter; this is the class that will help us quickly create the data context.
In the constructor, we pass in an IDbContextFactory; this is where the
dependency injection mechanism will deliver a factory to us.

We will talk more about dependency injection in Chapter 4, Understanding Basic
Blazor Components.

Creating a data project 61

4. Add the following code to our MyBlogApiServerSide.cs just under the code
we just added in the class:

public async Task<BlogPost> GetBlogPostAsync(int id)

{

 using var context = factory.CreateDbContext();

 return await context.BlogPosts.Include
 (p=>p.Category).Include(p=>p.Tags).
 FirstOrDefaultAsync(p => p.Id == id);

}

public async Task<int> GetBlogPostCountAsync()

{

 using var context = factory.CreateDbContext();

 return await context.BlogPosts.CountAsync();

}

public async Task<List<BlogPost>> GetBlogPostsAsync(int
numberofposts, int startindex)

{

 using var context = factory.CreateDbContext();

 return await context.BlogPosts.OrderByDescending
 (p=>p.PublishDate).Skip(startindex).Take
 (numberofposts).ToListAsync();

}

Take a look at the GetBlogPostAsync method. It starts with using var
context = factory.CreateDbContext();, which used the factory to
create an instance of our data context. The using keyword at the beginning of the
line makes sure to dispose of the factory as soon as the method is done.

We get one single blogpost from the database and use .Include(p=>p.
Category) and .Include(p=>p.Tags) to retrieve the related data for those
properties.

All the get methods we just implemented look pretty much the same (they return
all items or a specific item by Id) except for GetBlogPostsAsync, which also
has a start index and the number of posts we want to get, so that we can get a range
of posts.

62 Introducing Entity Framework Core

5. Add the following code under the code we just added:

public async Task<List<Category>> GetCategoriesAsync()

{

 using var context = factory.CreateDbContext();

 return await context.Categories.ToListAsync();

}

public async Task<Category> GetCategoryAsync(int id)

{

 using var context = factory.CreateDbContext();

 return await context.Categories.Include(p =>
 p.BlogPosts).FirstOrDefaultAsync(c=>c.Id==id);

}

This is the code to get categories, which works in the same way as getting the blog
posts. In this case, we don't have a way to just get a few of them (as we have with
blog posts) since they are probably very few in number.

6. Next, we do the same thing for tags. Add the following code just under the code we
added in step 5:

public async Task<Tag> GetTagAsync(int id)

{

 using var context = factory.CreateDbContext();

 return await context.Tags.Include(p =>
 p.BlogPosts).FirstOrDefaultAsync(c => c.Id == id);

}

public async Task<List<Tag>> GetTagsAsync()

{

 using var context = factory.CreateDbContext();

 return await context.Tags.ToListAsync();

}

These steps 4 to 6 are all the methods that get data from the API. Since all the
methods we just added get one or more items from the database, I won't go through
them all, but I will point out some important parts.

Now it's time to implement the delete methods.

Creating a data project 63

7. Add the following code just under the code we just added in step 6:

private async Task DeleteItem(IMyBlogItem item)

{

 using var context = factory.CreateDbContext();

 context.Remove(item);

 await context.SaveChangesAsync();

}

To avoid repeating the delete code for all three data classes, we have added a helper
method that will delete any object we pass to the method. Since all our data classes
implement IMyBlogItem, we can have one delete method that handles all
deletions.

8. We could have done the same in our API, just having one delete method, but
there might be a moment where we want to handle deletions differently depending
on the type. In the IMyBlogApi we have different delete methods for each type.

In MyBlogApiServerSide add the following code beneath the code we just
added:

public async Task DeleteBlogPostAsync(BlogPost item)

{

 await DeleteItem(item);

}

public async Task DeleteCategoryAsync(Category item)

{

 await DeleteItem(item);

}

public async Task DeleteTagAsync(Tag item)

{

 await DeleteItem(item);

}

As we can see, the implementations of these methods all call the DeleteItem
method.

9. Add the following code beneath the code we just added:

private async Task<IMyBlogItem> SaveItem(IMyBlogItem
item)

{

64 Introducing Entity Framework Core

 using var context = factory.CreateDbContext();

 if (item.Id == 0)

 {

 context.Add(item);

 }

 else

 {

 if (item is BlogPost)

 {

 var post = item as BlogPost;

 var currentpost = await
 context.BlogPosts.Include
 (p => p.Category).Include(p =>
 p.Tags).FirstOrDefaultAsync
 (p => p.Id == post.Id);

 currentpost.PublishDate = post.PublishDate;

 currentpost.Title = post.Title;

 currentpost.Text = post.Text;

 var ids = post.Tags.Select(t => t.Id);

 currentpost.Tags = context.Tags.Where(t =>
 ids.Contains(t.Id)).ToList();

 currentpost.Category = await
 context.Categories.FirstOrDefaultAsync
 (c => c.Id == post.Category.Id);

 await context.SaveChangesAsync();

 }

 else

 {

 context.Entry(item).State =

 EntityState.Modified;

 }

 }

 await context.SaveChangesAsync();

 return item;

}

public async Task<BlogPost> SaveBlogPostAsync(BlogPost
item)

{

Creating a data project 65

 return (await SaveItem(item)) as BlogPost;

}

public async Task<Category> SaveCategoryAsync(Category
item)

{

 return (await SaveItem(item)) as Category;

}

public async Task<Tag> SaveTagAsync(Tag item)

{

 return (await SaveItem(item)) as Tag;

}

If the Id is 0, we add item to context, using the context.Add method to add
the item to the database. If the Id is not 0, we assume that the item is already in the
database and therefore should only be attached (connected) to the database.

Since BlogPost refers to other database objects, we need to load them as well.
While writing this method it became apparent that this might not be the best
solution for our scenario, but I wanted to show the possibility so I decided to keep it
like this.

When an item has been saved, it will be returned (possibly with an updated Id if
the item is created).

Our database and data models are done!

In the end, there will be five tables in the database. We know three of the tables, since they
correspond to the classes we have created:

• BlogPost, containing our blog posts

• Categories, containing our categories

• Tags, containing our tag

The other two tables are as follows:

• BlogPostTag, containing the relation between Tags and BlogPost

• __EFMigrationsHistory, which contains and tracks the migrations

66 Introducing Entity Framework Core

The BlogPostTag table is created for us since Entity Framework Core has identified a
many-to-many relationship. Migrations use the __EFMigrationsHistory table to
know what migrations have already been executed on the table.

The next step is to add and configure the Blazor project to use the database.

Adding the DbContext to Blazor
Using DbContext, we will be able to access the data from our database. We need to add
DbContext to our Blazor project to be able to access the data from Blazor:

1. Beneath the MyBlogServerSide node in Solution Explorer, find Dependencies.
Right-click on Dependencies and select Add Project reference.

2. In the list of projects, check the MyBlog.Data project and click OK:

Figure 3.2 – Visual Studio Reference manager
Now we have all the external items in place, including the external NuGet packages
and a reference to our MyBlog.Data project.

3. In the MyBlogServerSide project, open the Startup.cs file and add the
following using statements:

using Microsoft.EntityFrameworkCore;

using MyBlog.Data;

using MyBlog.Data.Interfaces;

using MyBlogServerSide.Data;

Adding the DbContext to Blazor 67

4. Add following code to the ConfigureServices method:

services.AddDbContextFactory<MyBlogDbContext>(opt => opt.
UseSqlite($"Data Source=../MyBlog.db"));

services.AddScoped<IMyBlogApi, MyBlogApiServerSide>();

This is how we configure the database access. We add a DbContextFactory
service and send in our MyBlogDbContext class, so when we ask for
IDbFactory<MyBlogDbContext> it will return a DbFactory instance capable
of instantiating a MyBlogDbContext class. In Chapter 4, Understanding Basic
Blazor Components, we will explore dependency injection further and will explain
what we just did in more depth.

We also add a configuration for our database, in this case, a SQLite database. Then
we add IMyBlogApi as scoped, so whenever we ask the dependency injection for
IMyBlogApi, it will return a MyBlogApiServerSide instance.

5. Finally, we need to make sure the database gets created and that the migration
(the code that sets up the database) runs. In Startup.cs, edit the Configure
method so it starts like this:

public void Configure(IApplicationBuilder
app, IWebHostEnvironment env,
IDbContextFactory<MyBlogDbContext> factory)

{

 factory.CreateDbContext().Database.Migrate();

The method has an IDbContextFactory<MyBlogDbContext> parameter that
will trigger the dependency injection (that we configured in the previous step) and
deliver DbContextFactory<MyBlogDbContext>. We then create an instance
of our DbContext and execute the Migrate method; this will create the database
(if it doesn't exist) and run the migration (in this case, creating all the tables and
relations).

Now we can use our API to access the database in our Blazor Server project.

68 Introducing Entity Framework Core

Summary
In this chapter, we learned about Entity Framework Core 5. We created a database using
SQLite and used migrations to create the database. Most applications use some kind of
data, so knowing how to use a database together with Blazor is very important.

We also created an API to access the database (which will become important when
we take a look at sharing resources between projects in Chapter 9, Sharing Code and
Resources).

In the next chapter, we will learn about components, particularly the built-in components
in Blazor templates. We will also create our first component using the API and database
we created in this chapter.

4
Understanding Basic

Blazor Components
In this chapter, we will take a look at the components that come with the Blazor template,
as well as starting to build our own components. Knowing the different techniques used
for building Blazor websites will help us when we start building our components.

Blazor uses components for most things, so we will use the knowledge we get from this
chapter throughout the book.

We will start this chapter with theory and end by creating a component to show some
blog posts using the API we created in the previous chapter, Chapter 3, Introducing Entity
Framework Core.

In this chapter, we will cover the following topics:

• Exploring components

• Learning Razor syntax

• Parameters

• Writing our first component

70 Understanding Basic Blazor Components

Technical requirements
In this chapter, we will start building our components, and for that, you'll need the code
we created in the previous chapter, Chapter 3, Introducing Entity Framework Core. If you
have followed the instructions in the previous chapters, then you are good to go; if not,
then make sure you clone/download the repo. The starting point for this chapter can be
found in the ch3 folder and the finished code in ch4.

You can find the source code for this chapter's end result at https://github.
com/PacktPublishing/Web-Development-with-Blazor/tree/master/
Chapter04.

For this chapter, we will be working with the Blazor Server project so make sure to
right-click on the MyBlogServerSide project and select Set as Startup Project.

Exploring components
In Blazor, a component is a .razor file that can contain a small, isolated functionality
(code and markup) or can be used as a page itself. A component can host other
components as well. This chapter will show us how components work and how to
use them.

There are three different ways we can create a component:

• Using Razor syntax, with code and HTML sharing the same file

• Using a code-behind file together with a .razor file

• Using only a code-behind file

We will go through the different options. The templates we will go through next all use the
first option, .razor files where we have a mix of code and HTML in the same file.

The components in the template are as follows:

• counter

• FetchData

https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter04
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter04
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter04

Exploring components 71

counter
The counter page shows a button and a counter; if we press the button, the counter
increases. We will now break the page apart so it is easier to understand.

At the top of the page is the @page directive, which makes it possible to route to the
component directly, as we can see in this code:

@page "/counter"

If we start the MyBlogServerSide project and add /counter to the end of the URL,
we see that we can directly access the component by using its route. We can make the
route take parameters as well, but we will come back to that in a little while.

Next, let's explore the code. To add code to the page, we use the @code statement, and
within that statement, we can add ordinary C# code, as shown:

@code {

 private int currentCount = 0;

 private void IncrementCount()

 {

 currentCount++;

 }

}

In the preceding code block, we have a private currentCount variable that is set
to 0. Then we have a method called IncrementCount(), which increments the
currentCount variable by 1.

We show the current value by using the @ sign. In Razor, the @ sign indicates that it is time
for some code:

<p>Current count: @currentCount</p>

As we can see, Razor is very smart because it understands when the code stops and the
markup continues, so there is no need to add something extra to transition from code to
the markup (more on that in the next section).

72 Understanding Basic Blazor Components

As we can see in the preceding example, we are mixing HTML tags with @
currentCount and Razor understands the difference. Next, we have the button that is
a trigger for changing the value:

<button class="btn btn-primary" @onclick="IncrementCount">Click
me</button>

This is an HTML button with a Bootstrap class on it (to make it look a bit nicer). @
onclick is binding the button's onclick event to the IncrementCount() method.
If we were to use onclick, without the @, it would refer to the JavaScript event and
not work. So, when we press the button, it will call the IncrementCount() method
(depicted by 1 in Figure 4.1), the method increments the variable (depicted by 2), and by
changing the variable, the UI will automatically be updated (depicted by 3), as shown in
Figure 4.1:

Figure 4.1 – The flow of the counter component

The counter component is implemented the same way for both Blazor WebAssembly
and Blazor Server. The FetchData component has two different implementations,
simply because the Blazor Server project can access the server data directly and Blazor
WebAssembly needs to access it through a web API.

We use the same approach with our API so that we get a feel for how we can
leverage Dependency Injection (DI) and also connect to a database directly when
we use Blazor Server.

Exploring components 73

FetchData
The next component we will take a look at is the FetchData component. It's located in
the Pages/FetchData.razor folder.

The main implementation of the FetchData component looks the same for both Blazor
WebAssembly and Blazor Server. The top rows of the files, as well as the way it gets data,
differ in the two versions. For Blazor Server, it looks like this:

@page "/fetchdata"

@using MyBlogServerSide.Data

@inject WeatherForecastService ForecastService

It defines a route, adds a namespace, and injects a service. We can find the service in the
Data folder in the MyBlogServerSide project.

The service is a class that creates some random forecast data; the code looks like this:

public class WeatherForecastService

{

 private static readonly string[] Summaries = new[]

 {

 "Freezing", "Bracing", "Chilly", "Cool", "Mild",
 "Warm", "Balmy", "Hot", "Sweltering", "Scorching"

 };

 public Task<WeatherForecast[]> GetForecastAsync
 (DateTime startDate)

 {

 var rng = new Random();

 return Task.FromResult(Enumerable.Range(1,
 5).Select(index => new WeatherForecast

 {

 Date = startDate.AddDays(index),

 TemperatureC = rng.Next(-20, 55),

 Summary = Summaries[rng.Next(Summaries.Length)]

 }).ToArray());

 }

}

74 Understanding Basic Blazor Components

As we can see, it generates summaries and randomizes temperatures.

In the code section of the FetchData component, we will find the code that calls
the service:

private WeatherForecast[] forecasts;

protected override async Task OnInitializedAsync()

{

 forecasts = await
 ForecastService.GetForecastAsync(DateTime.Now);

}

The code will get the data from the service and populate an array of WeatherForecast
called forecasts.

In the MyBlogWebAssembly.Client project, things look a bit different. First of all,
the top rows of the file look like this:

@page "/fetchdata"

@using MyBlogWebAssembly.Shared

@inject HttpClient Http

The code defines a route using a page directive, adds a namespace to our shared library,
and injects HttpClient instead of the service. HttpClient is used to get the data
from the server, which is a more realistic real-world scenario.

HttpClient is defined in the Program.cs file and has the same base address as
the MyBlogWebAssembly.Server project since the server project is hosting the
client project.

Getting the data looks like this:

private WeatherForecast[] forecasts;

protected override async Task OnInitializedAsync()

{

 forecasts = await Http.GetFromJsonAsync
 <WeatherForecast[]>("WeatherForecast");

}

Exploring components 75

The code will get the data and populate an array of WeatherForecast called
forecasts. But instead of getting the data from the service, we are making a call to the
"WeatherForecast" URL. We can find the web API in the MyBlogWebAddembly.
Server project.

The controller (Controllers/WeatherForcastController.cs) looks like this
(with a lot of similarities to the service):

[ApiController]

[Route("[controller]")]

public class WeatherForecastController : ControllerBase

{

 private static readonly string[] Summaries = new[]

 {

 "Freezing", "Bracing", "Chilly", "Cool", "Mild",
 "Warm", "Balmy", "Hot", "Sweltering", "Scorching"

 };

 private readonly ILogger<WeatherForecastController> logger;

 public WeatherForecastController
 (ILogger<WeatherForecastController> logger)

 {

 this.logger = logger;

 }

 [HttpGet]

 public IEnumerable<WeatherForecast> Get()

 {

 var rng = new Random();

 return Enumerable.Range(1, 5).Select(index => new
 WeatherForecast

 {

 Date = DateTime.Now.AddDays(index),

 TemperatureC = rng.Next(-20, 55),

 Summary = Summaries[rng.Next(Summaries.Length)]

 })

 .ToArray();

 }

}

76 Understanding Basic Blazor Components

It looks pretty much the same as the service does but is implemented as a web API instead.
As the data looks the same in both versions, getting the data (in both cases) will populate
an array with weather forecast data.

In Pages/FetchData.razor, the code for showing the weather data looks like this in
both Blazor WebAssembly and Blazor Server:

<h1>Weather forecast</h1>

<p>This component demonstrates fetching data from a service.</
p>

@if (forecasts == null)

{

 <p>Loading...</p>

}

else

{

 <table class="table">

 <thead>

 <tr>

 <th>Date</th>

 <th>Temp. (C)</th>

 <th>Temp. (F)</th>

 <th>Summary</th>

 </tr>

 </thead>

 <tbody>

 @foreach (var forecast in forecasts)

 {

 <tr>

 <td>@forecast.Date.ToShortDateString()

 </td>

 <td>@forecast.TemperatureC</td>

 <td>@forecast.TemperatureF</td>

 <td>@forecast.Summary</td>

 </tr>

 }

 </tbody>

Learning Razor syntax 77

 </table>

}

As we can see, by using the Razor syntax, we are seamlessly mixing code with HTML. The
code checks whether there is any data – if yes, then it will render the table; if not, it will
show a loading message. We have full control over the HTML, and Blazor will not add
anything to the generated HTML.

There are component libraries that can make this process a bit simpler, which we will take
a look at in the next chapter, Chapter 5, Creating Advanced Blazor Components.

Now that we know how the sample template is implemented, it is time to dive a little bit
deeper into the Razor syntax itself.

Learning Razor syntax
One of the things I like about the Razor syntax is that it is easy to mix code and HTML
tags. This section will be a lot of theory to help us get to know the Razor syntax.

To transition from HTML to code (C#), we use the @ symbol. There are a couple of ways
we can add code to our file:

• Razor code blocks

• Implicit Razor expressions

• Explicit Razor expressions

• Expression encoding

• Directives

Razor code blocks
We have already seen some code blocks. A code block looks like this:

@code {

 //your code here

}

If we wish, we can skip the code keyword, like so:

@{

 //your code here

}

78 Understanding Basic Blazor Components

Inside those curly braces, we can mix HTML and code like this:

@{

 void RenderName(string name)

 {

 <p>Name: @name</p>

 }

 RenderName("Steve Sandersson");

 RenderName("Daniel Roth");

}

Notice how the RenderName() method just transitions from code into the paragraph
tags and back to code; this is an implicit transition.

If we want to output text without having an HTML tag, we can use the text tag instead of
using the paragraph tags, as shown in the following example:

<text>Name: @name</text>

This would render the same result as shown in the previous code but without the
paragraph tags. The text tag won't be rendered.

Implicit Razor expressions
Implicit Razor expressions are when we add code inside HTML tags.

We have already seen this in the FetchData example:

<td>@forecast.Summary</td>

We start with a <td> tag, then use the @ symbol to switch to C#, and then back to HTML
for the end tag. We can use the await keyword together with a method call, but other
than that, implicit Razor expressions cannot contain any spaces.

We cannot call a generic method using implicit expressions since <> would be interpreted
as HTML. Hence, to solve this issue, we can use explicit expressions.

Explicit Razor expressions
We can use explicit Razor expressions if we want to use spaces in the code. Simply write
the code with the @ symbol followed by parentheses, (). So, it would look like this: @().

Learning Razor syntax 79

In this sample, we subtract 7 days from the current date:

<td>@(DateTime.Now - TimeSpan.FromDays(7))</td>

We can also use explicit Razor expressions to concatenate text; for example, we can
concatenate text and code like this:

<td>Temp@(forecast.TemperatureC)</td>

The output would then be <td>Temp42</td>.

Using explicit expressions, we can easily call generic methods by using this syntax:

<td>@(MyGenericMethod<string>())</td>

The Razor engine knows whether we are using code or not. It also makes sure to encode
strings to HTML when outputting it to the browser, which is called expression encoding.

Expression encoding
If we have HTML as a string, it will be escaped by default. Take this code, for example:

@("Hello World")

The rendered HTML would look like this:

Hello World

To output the actual HTML from a string (something we want to do later on), you can use
this syntax:

@((MarkupString)"Hello World")

By using MarkupString, the output will be HTML, which will show the HTML tag
span. In some cases, one line of code isn't enough; then we can use code blocks.

Directives
There are a bunch of directives that change the way a component gets parsed or can enable
functionality. These are reserved keywords that follow the @ symbol. We will go through
the most common and useful ones.

80 Understanding Basic Blazor Components

We can use code-behind to write our code to get a bit more separation between the code
and layout. I find that it is pretty nice to have the layout and the code inside of the same
.razor file. Later in this chapter, we will look at how to use code-behind instead of using
Razor syntax for everything.

In the following examples, we will look at how we would do the same thing using
code-behind.

Adding an attribute
To add an attribute to our page, we can use the attribute directive:

@attribute [Authorize]

If we were using a code-behind file, we would use the following syntax instead:

[Authorize]

Adding an interface
To implement an interface (IDisposable in this case), we would use the following code:

@implements IDisposable

Then we would implement the methods the interface needs in a @code{} section.

To do the same in a code-behind scenario, we would add the interface after the class
name, as shown in the following example:

public class SomeClass : IDisposable {}

Inheriting
To inherit another class, we should use the following code:

@inherits TypeNameOfClassToInheritFrom

To do the same in a code-behind scenario, we would add the class we want to inherit from
after the class name:

public class SomeClass : TypeNameOfClassToInheritFrom {}

Learning Razor syntax 81

Generics
We can define our component as a generic component.

Generics make it possible for us to make components that let us define the data type, so
the component works with any data type.

To define a component as a generic component, we add the @typeparam directive; then
we can use the type in the code of the component like this:

@typeparam TItem

@code

{

 [Parameter]

 public List<TItem> Data { get; set; }

}

Generics are super powerful when creating reusable components and we will come back
to generics in Chapter 6, Building Forms with Validation.

Changing the layout
If we want to have a specific layout for a page (not the default one specified in the app.
razor file), we can use the @layout directive:

@layout AnotherLayoutFile

This way, our component will use the layout file specified (this only works for components
that have the @page directive).

Setting a namespace
By default, the namespace of the component will be the name of the default namespace
of our project, plus the folder structure. If we want our component to be in a specific
namespace, we can use the following:

@namespace Another.NameSpace

Setting a route
We have already touched on the @page directive. If we want our component to be directly
accessed using a URL, we can use the @page directive:

@page "/theurl"

82 Understanding Basic Blazor Components

The URL can contain parameters, subfolders, and much more, which we will come back to
later in this chapter.

Adding a using statement
To add a namespace to our component, we can use the @using directive:

@using System.IO

If there are namespaces that we use in many of our components, then we can add them to
the _Imports.razor file instead. This way, it will be available in all the components
we create.

Now we know more about how Razor syntax works. Don't worry, we will have plenty
of time to practice it. There is one more directive that I haven't covered in this section
and that is inject. We have seen it a couple of times already but to cover all the bases,
we first need to understand what DI is and how it works, which we will see in the next
section.

Understanding dependency injection
DI is a software pattern and a technique to implement Inversion of Control (IoC).

IoC is a generic term that means we can indicate that the class needs a class instance,
instead of letting our classes instantiate an object. We can say that our class wants either
a specific class or a specific interface. The creation of the class is somewhere else, and it is
up to IoC what class it will create.

When it comes to DI, it is a form of IoC where an object (class instance) is passed through
constructors, parameters, or service lookups.

In Blazor, we can configure DI by providing the way to instantiate an object. In Blazor, this
is a key architecture pattern that we should use. We have seen a couple of references to
it already, for example, in Startup.cs:

services.AddSingleton<WeatherForecastService>();

Here, we say that if any class wants WeatherForecastService, the application should
instantiate an object of the WeatherForecastService type. In this case, we don't use
an interface; instead, we could have created an interface and configured it like this:

services.AddSingleton<IWeatherForecastService
,WeatherForecastService>();

Learning Razor syntax 83

In this case, if a class asks for an instance of IWeatherForecastService, the app
would instantiate a WeatherForecastService object and return it. We did this
in the previous chapter, Chapter 3, Introducing Entity Framework Core. We created an
IMyBlogApi interface that returned an instance of MyBlogApiServerSide; when
we implement the WebAssembly version, the DI will return another class instead.

There are many advantages to using DI. Our dependencies are loosely coupled,
which means that we don't instantiate another class in our class. Instead, we ask for
an instance, which makes it easier to write tests, as well as changing implementations
depending on platforms.

Any external dependencies will be a lot clearer since we need to pass them into the class.
We also can set the way we should instantiate the object in a central place. We configure
the DI in Startup.cs (for Blazor Server) and Program.cs (for WebAssembly).

We can configure the creation of objects in different ways, such as the following:

• Singleton

• Scoped

• Transient

Singleton
When we use singleton, the object will be the same for all users of our site. The object will
only be created once.

To configure a singleton service, use the following:

services.AddSingleton<IWeatherForecastService
,WeatherForecastService>();

We should use singleton when we want to share our object with all the users of our site but
beware the state is shared so do not store any data connected to one particular user or user
preferences, because it will affect all the users.

Scoped
When we use scoped, a new object will be created, once for each connection, and since
Blazor Server needs a connection to work, it will be the same object as long as the user
has a connection. WebAssembly does not have the concept of scoped since there is no
connection being made, so all the code is running inside of the user's web browser. If
we use scoped, it will work the same way as a singleton for Blazor WebAssembly. The
recommendation is still to use scoped if the idea is to scope the service to the current user.

84 Understanding Basic Blazor Components

To configure a scoped service, use the following:

services.AddScoped<IWeatherForecastService
,WeatherForecastService>();

We should use scoped if we have data that belongs to the user. We can keep the user's state
by using scoped objects. More on that in Chapter 11, Managing State.

Transient
By using transient, a new object will be created every time we ask for it.

To configure a transient service, use the following:

services.AddTransient<IWeatherForecastService
,WeatherForecastService>();

We should use transient if we don't need to keep any state and we don't mind the object
being created every time we ask for it.

Now that we know how to configure a service, we need to start using the service by
injecting it.

Injecting the service
There are three ways to inject a service.

We have already seen the first method in the FetchData component code. We can use
the @inject directive in the Razor file:

@inject WeatherForecastService ForecastService

This will make sure we have access to WeatherForecastService in our component.

The second way is to create a property by adding the Inject attribute if we are using
code-behind:

[Inject]

public WeatherForecastService ForecastService { get; set; }

The third way is if we want to inject a service into another service, then we need to inject
the services using the constructor:

public class MyService

{

Learning Razor syntax 85

 public MyService(WeatherForecastService

 weatherForecastService)

 {

 }

}

Now we know how DI works and why we should use it.

In this chapter, we have mentioned code-behind a couple of times. In the next section,
we will take a look at how we can use code-behind together with Razor files, and even skip
the Razor files altogether.

Figuring out where to put the code
We have seen examples of writing code directly in the Razor file. I prefer doing that unless
the code gets too complicated.

There are four ways we can write our components:

• In the Razor file

• In a partial class

• Inheriting a class

• Only code

In the Razor file
If we are writing a file that is not that complex, it would be nice to not have to switch
files when writing components. As we already covered in this chapter, we can use the @
code directive to add code directly to our Razor file. If we want to move the code to
a code-behind file, then it is only the directives that we need to change. For the rest of the
code, we can just move to the code-behind class. When I started with Blazor, it felt strange
to write code and markup in the same file, but I would suggest that you try it out when
you develop your web apps.

But many developers prefer code-behind, separating the code from the layout. For that,
we can use a partial class.

86 Understanding Basic Blazor Components

In a partial class
We can create a partial class with the same filename as the Razor file and just add .cs.

If you have downloaded the source code (or we can check the code on GitHub)
for Chapter 3, Introducing Entity Framework Core, you can take a look at
FetchDataWithCodeBehind.razor.cs in the MyBlogServerSide project.
I have moved all the code to the code-behind file; the result when compiling this will be
the same as if we kept the code in the Razor file. It is just a matter of preference.

The code-behind looks like this:

public partial class FetchDataWithCodeBehind

{

 [Inject]

 public WeatherForecastService ForecastService { get; set; }

 private WeatherForecast[] forecasts;

 protected override async Task OnInitializedAsync()

 {

 forecasts = await ForecastService.GetForecastAsync
 (DateTime.Now);

 }

}

As we can see, instead of using @inject, we are using [Inject]. Other than that,
I have just copied the code over from the Razor file.

This is not the only way to use a code-behind file; we can also inherit from
a code-behind file.

Inheriting a class
We can also create a class called something completely different (the common thing is to
call it the same thing as the Razor file and add Model at the end) and inherit it in
our Razor file. For that to work, we need to inherit from ComponentBase. In the case
of a partial class, the class already inherits from ComponentBase since the Razor file
does that.

Any fields need to be protected or public (not private) for the page to be able to access
them. My recommendation is to use the partial class if we don't need to inherit from our
own base class.

Learning Razor syntax 87

This is a snippet of the code-behind class declaration:

public class FetchDataWithInheritsModel:ComponentBase

We'll need to inherit from ComponentBase or from a class that inherits from
ComponentBase.

In the Razor file, we would use the @inherits directive:

@inherits FetchDataWithInheritsModel

The Razor file will now inherit from our code-behind class (this was the first available way
to create code-behind classes).

Both the partial and inherit options are simple ways of moving the code to a code-behind
file. But there is another option to completely skip the Razor file and use only code.

Only code
The Razor file will generate code at compile time. We can skip the Razor step if we want to
and write our layout completely in code.

This file (CounterWithoutRazor.cs) is available on GitHub.

The counter sample would look like this:

using Microsoft.AspNetCore.Components;

using Microsoft.AspNetCore.Components.Rendering;

using Microsoft.AspNetCore.Components.Web;

namespace MyBlogServerSide.Pages

{

 [Route("/CounterWithoutRazor")]

 public class CounterWithoutRazor: ComponentBase

 {

 protected override void BuildRenderTree

 (RenderTreeBuilder builder)

 {

 builder.AddMarkupContent(0,
 "<h1>Counter</h1>\r\n\r\n");

 builder.OpenElement(1, "p");

 builder.AddContent(2, "Current count: ");

 builder.AddContent(3,currentCount);

88 Understanding Basic Blazor Components

 builder.CloseElement();

 builder.AddMarkupContent(4, "\r\n\r\n");

 builder.OpenElement(5, "button");

 builder.AddAttribute(6, "class",
 "btn btn-primary");

 builder.AddAttribute(7, "onclick",
 EventCallback.Factory.Create<MouseEventArgs>
 (this,IncrementCount));

 builder.AddContent(8, "Click me");

 builder.CloseElement();

 }

 private int currentCount = 0;

 private void IncrementCount()

 {

 currentCount++;

 }

 }

}

The Razor file will first be converted to something that roughly looks the same as the
previous code, and then the code is compiled. It adds the elements one by one, which, in
the end, will render the HTML.

The numbers in the code are how Blazor keeps track of each element in the render tree.
Some prefer to write the code as in the previous code block, rather than using the Razor
syntax; there are even efforts in the community to simplify the process of writing the
BuildRenderTree() function manually.

My recommendation is to never write this manually, but I've kept it in the book because
it shows how Razor files get compiled. Now that we know how to use code-behind,
let's take a look at the lifecycle events of Blazor and when they get executed.

Lifecycle events
There are a couple of lifecycle events we can use to run our code. In this section, we will go
through them and see when we should use them. Most lifecycle events have two versions
– synchronous and asynchronous.

Learning Razor syntax 89

OnInitialized and OnInitializedAsync
When the component is fully loaded, OnInitialized() is called and then
OnInitializedAsync(). This is a great method to load any data as the UI has
not been rendered yet at this point. If we are doing any long-running tasks (such
as getting data from a database), we should put that code in the
OnInitializedAsync() method.

These methods will not run again if a parameter changes (see OnParameterSet() and
OnParameterSetAsync()).

OnParametersSet and OnParametersSetAsync
OnParameterSet() and OnParameterSetAsync() are called when the component
is initialized (after OnInitialized() and OnInitializedAsync()), and whenever
we change the value of a parameter.

If we, for example, load data in the OnInitialized() method but it does
use a parameter, the data won't be reloaded if the parameter is changed since
OnInitialized() will only run once. We need to trigger a reload of the data in
OnParameterSet() or OnParameterSetAsync() or move the loading to that
method, of course.

OnAfterRender and OnAfterRenderAsync
After the component is finished rendering, the OnAfterRender() and
OnAfterRenderAsync() methods are called. When the methods are being called,
all the elements are rendered, so if we want/need to call any JavaScript code, we have
to do that from these methods (we will get an error if we try to make a JavaScript
interop from any of the other lifecycle event methods). We also have access to a
firstRender parameter so we can make sure to only run an initialization code
once (only on the first render).

ShouldRender
ShouldRender() is called when our component is re-rendered, and if it returns
false, then the component will not be rendered again. It will always render once; it is
only when it is re-rendered that the method runs.

ShouldRender() does not have an asynchronous option.

Now we know when the different lifecycle events happen and in what order. A component
can also have parameters, and in that way, we can reuse them but with different data.

90 Understanding Basic Blazor Components

Parameters
A parameter makes it possible to send a value to a component. To add a parameter to
a component, we use the [Parameter] attribute on a public property:

@code {

 [Parameter]

 public string MyParameter { get; set; }

}

We can also do the same using a code-behind file. We can add a parameter using the @
page directive by specifying it in the route:

@page "/parameterdemo/{MyParameter}"

In this case, we have to have a parameter specified with the same name as the name inside
of the curly braces. To set the parameter in the @page directive, we simply go to the URL:
/parameterdemo/THEVALUE.

There are cases where we want to specify another type instead of a string (string is the
default). We can add the data type after the parameter name like this:

@page "/parameterdemo/{MyParameter:int}"

This will match the route only if the data type is an integer. We can also pass parameters
using cascading parameters.

Cascading parameters
If we want to pass a value to multiple components, we can use a cascading parameter.

Instead of using [Parameter], we can use [CascadingParameter] like this:

[CascadingParameter]

public int MyParameter { get; set; }

To pass a value to the component, we surround it with a
CascadingValue component like this:

<CascadingValue Value="MyProperty">

 <ComponentWithCascadingParameter/>

</CascadingValue> @code {

 public string MyProperty { get; set; } = "Test Value";

}

Writing our first component 91

CascadingValue is the value that we pass to the component and
CascadingParameter is the property that receives the value.

As we can see, we don't pass any parameter values to the
ComponentWithCascadingParameter component; the cascading value will match
the parameter with the same data type. If we have multiple parameters of the same type,
we can specify the name of the parameter in the component with the cascading parameter
like this:

[CascadingParameter(Name = "MyCascadingParameter")]

We can also do so for the component that passes CascadingValue, like this:

<CascadingValue Value="MyProperty" Name="MyCascadingParameter">

 <ComponentWithCascadingParameter/>

</CascadingValue>

If we know that the value won't change, we can specify that by using the IsFixed
property:

<CascadingValue Value="MyProperty" Name="MyCascadingParameter"
IsFixed="True">

 <ComponentWithCascadingParameter/>

</CascadingValue>

This way, Blazor won't look for changes. The cascading values/parameters cannot be
updated upward but are updated only downward. This means that to update a cascading
value, we need to implement it in another way; updating it from inside the component
won't change any components that are higher in the hierarchy.

In Chapter 5, Creating Advanced Blazor Components, we will look at events that are
one-way to solve the problem of updating a cascading value.

Phew! This has been an information-heavy chapter, but now we know the basics of Blazor
components. Now it is time to build one!

Writing our first component
The first component we will build shows all the blog posts on a site. To be fair, we haven't
written any blog posts yet but we will temporarily solve that so we can start doing
something fun.

92 Understanding Basic Blazor Components

In Chapter 3, Introducing Entity Framework Core, we created a database and an API
(or interface); now it is time to use them.

The first thing we want to see is a list of blog posts, so we want our route to be "/". The
index page already has that route, so we are going to reuse that page.

To create our first component, follow these instructions:

1. In the MyBlogServerSide project, open Pages/Index.razor.

2. Replace the contents of that file with the following code:

@page "/"

@using MyBlog.Data.Interfaces

@using MyBlog.Data.Models

@inject IMyBlogApi api

@code{

 protected async Task AddSomePosts()

 {

 for (int i = 1; i <= 10; i++)

 {

 await api.SaveBlogPostAsync(new BlogPost()

 {

 PublishDate = DateTime.Now, Title =
 $"Blog post {i}", Text = "Text"

 });

 }

 }

}

If we start from the top, we can see a page directive. It will make sure that the
component will be shown when the route is "/". Then, we have three @using
directives, bringing in the namespaces so that we can use them in the Razor file.
Then we inject our API (using DI) and name the instance as api. In the code
section, there is a method that adds 10 blog posts to our website. Next, we should
list the blog posts.

3. Add a variable that holds all our posts. In the code section, add the following:

protected List<BlogPost> posts = new List<BlogPost>();

Now we need to load the data.

Writing our first component 93

4. To load posts, add the following in the code section:

protected override async Task OnInitializedAsync()

{

 posts = await api.GetBlogPostsAsync(10, 0);

 await base.OnInitializedAsync();

}

Now, when the page loads, the posts will be loaded as well: 10 posts and page 0 (the
first page).

5. Under the @inject row, add the following code:

<button @onclick="AddSomePosts">Add some fake posts</
button>

 @foreach (var p in posts)

 {

 @p.Title

 }

We start by adding a button so that we can trigger the AddSomePosts function.
Then we add an unordered list (ul) and inside that, we loop over blogposts and
show the title.

6. Now we can run the application by pressing Ctrl + F5 (Debug | Start Without
Debugging).

7. The page that shows up should just show an Add some fake posts button. Click
this button.

8. Since the page won't reload, OnInitializedAsync() won't run either.
We need to reload our web browser for the data to show up. In a real-world
application, we don't want our users to have to reload the browser, but since this
step is just temporary, I didn't want to overcomplicate things.

Great job, we have created our first component!

94 Understanding Basic Blazor Components

Summary
In this chapter, we learned a lot about Razor syntax, something we will use throughout the
book. We learned about DI, directives, and parameters, and, of course, created our first
component. This knowledge will help us understand how to create components and how
to reuse components.

In the next chapter, we will take a look at more advanced component scenarios.

5
Creating Advanced

Blazor Components
In the last chapter, we learned all the basics of creating a component. In this chapter, we
will learn how to take our components to the next level.

This chapter will focus on some of the features that will make our components reusable,
which will enable us to save time, and also give us an understanding of how to use
reusable components made by others.

We will also take a look at some of the built-in components that will help you by adding
additional functionality (compared to using HTML tags) when you build your Blazor app.

In this chapter, we will cover the following topics:

• Exploring binding

• Adding Actions and EventCallback

• Using RenderFragment

• Exploring the new built-in component

96 Creating Advanced Blazor Components

Technical requirements
In this chapter, you will start building your components. For this, you'll need the code we
developed in the previous Chapter 4, Understanding Basic Blazor Components. If you have
followed the instructions in the previous chapters, then you are good to go. If not, then
make sure you clone/download the repo. The starting point for this chapter can be found
in the ch4 folder, and the finished chapter in ch5.

You can find the source code for this chapter's end result at https://github.
com/PacktPublishing/Web-Development-with-Blazor/tree/master/
Chapter05.

Exploring binding
Using bindings, you can connect variables either within a component (so that it updates
automatically) or by setting a component attribute.

In Blazor, we can bind values to components and there are two different ways to do this.

• One-way binding

• Two-way binding

By using binding, we can send information between components and make sure we can
update a value when we want to.

One-way binding
One-way binding is something that we have already talked about in Chapter 4, Creating
Basic Blazor Components. Let's take a look at the component again and continue to build
on it in this section.

In this section, we will combine parameters and binding.

The Counter.razor example looks like this:

@page "/counter"

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click
me</button>

@code {

 private int currentCount = 0;

 private void IncrementCount()

https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter05
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter05
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter05

Exploring binding 97

 {

 currentCount++;

 }

}

The component will show the current count and a button that will increment the current
count. This is one-way binding and, even though the button can change, the value of
currentcount only flows in one direction.

Since this part is designed to demonstrate the functionality and theory and it's not a
part of the finished project we are building, you don't have to write or run this code. The
source code for these components is available on GitHub.

We can add a parameter to the counter component. The code will then look like this:

@page "/counterwithparameter"

<h1>Counter</h1>

<p>Current count: @CurrentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click
me</button>

@code {

 [Parameter]

 public int IncrementAmount { get; set; } = 1;

 [Parameter]

 public int CurrentCount { get; set; } = 0;

 private void IncrementCount()

 {

 CurrentCount+=IncrementAmount;

 }

}

The code sample has two parameters, one for CurrentCount and one for
IncrementAmount. By adding parameters to the components, we can change their
behavior. This sample is, of course, a bit silly. The chances are that you won't have any use
for a component like this, but it illustrates the idea very well.

We can now take the component and add it inside another component. This is the
way we can create a reusable component and change its behavior by changing the value
of the parameters.

98 Creating Advanced Blazor Components

We change its behavior like this:

@page "/parentcounter"

<CounterWithParameter IncrementAmount="@incrementamount"
CurrentCount="@currentcount"></CounterWithParameter>

The current count is: @currentcount

@code {

 int incrementamount = 10;

 int currentcount = 0;

}

In this sample, we have two variables, incrementamount and currentcount, that we
pass into our CounterWithParameter component.

If we were to run this, we would see a counter component that counts in increments of
10. However, the currentcount variable is not going to be updated since it is only a
one-way binding (one direction).

To help us with that, we can implement two-way binding so that our parent component
will be notified of any changes.

Two-way binding
Two-way binding binds values in both directions. Our counter component will be able
to notify our parent component of any changes. In the next chapter, Chapter 6, Building
Forms with Validation, we will talk even more about two-way binding.

To make our CounterWithParameter component bind in two directions, we need to
add EventCallback. The name has to consist of the name of the parameter followed by
Changed. This way, Blazor will make sure to update the value if it changes. In our case,
we would need to name it CurrentCountChanged. The code would then look like this:

[Parameter]

public EventCallback<int> CurrentCountChanged { get; set; }

private void IncrementCount()

{

 CurrentCount += IncrementAmount;

 CurrentCountChanged.InvokeAsync(CurrentCount);

}

Adding Actions and EventCallback 99

By merely using that naming convention, Blazor knows that CurrentCountChanged is
the event that will get triggered when a change to CurrentCount occurs.

EventCallback cannot be null, so there is no reason to do a null check (more on that
in the next section).

We also need to change how we listen for changes:

<CounterWithParameterAndEvent IncrementAmount="@
incrementamount" @bind-CurrentCount="currentcount"/>

We need to add @bind- before the CurrentCount binding. You can also use the
following syntax to set the name of the event:

<CounterWithParameterAndEvent IncrementAmount="@
incrementamount" @bind-CurrentCount="currentcount" @bind-Curren
tCount:event="CurrentCountChanged"/>

By using :event, we can tell Blazor exactly what event we want to use, in this case, the
CurrentCountChanged event.

In the next chapter, Chapter 6, Building Forms with Validation, we will continue to look at
bindings with input/form components.

We can, of course, create events as well using EventCallback.

Adding Actions and EventCallback
To communicate changes, we can use EventCallback, as shown in the Two-way
binding section. EventCallback<T> differs a bit from what we might be used to in
.NET. EventCallback<T> is a class that is specially made for Blazor to be able to have
the event callback exposed as a parameter for the component.

In .NET in general, you can add multiple listeners to an event (multi-cast), but with
EventCallback<T>, you will only be able to add one listener (single-cast).

It is worth mentioning that you can, of course, use events the way you are used to from
.NET in Blazor as well. However, you probably want to use EventCallback<T> because
there are many upsides to using EventCallback over traditional .NET events.

.NET events use classes and EventCallback uses structs. This means that in Blazor,
we don't have to perform a null check before calling EventCallback because a struct
cannot be null.

100 Creating Advanced Blazor Components

EventCallback is asynchronous and can be awaited. When EventCallback has
been called, Blazor will automatically execute StateHasChanged on the consuming
component to make sure the component updates (if it needs to be updated).

So, if you require multiple listeners, you can use Action<T>, otherwise, you should use
EventCallback<T>.

Some event types have event arguments that we can access. They are optional, so in most
cases, you don't need to add them. You can add them by specifying them in a method or
you can use a lambda expression, like this:

<button @onclick="@((e)=>message=$"x:{e.ClientX} y:{e.
ClientY}")">Click me</button>

button will set a variable called message to a string containing the mouse coordinates.
The lambda has one parameter, e, which is of the MouseArgs type. You don't have to
specify the type, however. The compiler understands what type the parameter is.

Now that we have added actions and used EventCallback to communicate changes, we
will see how we can execute RenderFragment in the next section.

Using RenderFragment
To make our components even more reusable, we can supply them with a piece of Razor
syntax. In Blazor, you can specify RenderFragment, which is a fragment of Razor
syntax that you can execute and show.

Now that we have added actions and used EventCallback to communicate changes, we
will see how we can execute RenderFragment in the next section.

There are two types of render elements, RenderFragment and RenderFragment
<T>. RenderFragment is simply a Razor fragment without any input parameters,
and RenderFragment <T> has an input parameter that you can use inside the Razor
fragment code by using the context keyword. We won't go into depth about how to use
this now, but later in this chapter, we will talk about a component (Virtualize) that
uses RenderFragment<T> and, in the next chapter, Chapter 6, Building Forms with
Validation, we will implement a component using RenderFragments<T>.

We can make RenderFragment the default content inside of the component tags as
well as give it a default value. We will explore this next and build a component using
these features.

Using RenderFragment 101

Grid component
If you want to dig deeper into render fragments, please check
out Blazm Components, which have a grid component that uses
RenderFragments<T> heavily. Where I currently work, we use this
component, and it has been developed using real-world scenarios.

You can find it on GitHub here: https://github.com/
EngstromJimmy/Blazm.Components.

ChildContent
By naming the render fragment ChildContent, Blazor will automatically use
whatever is between the alert tags as content. This only works, however, if you are using
a single render fragment; if you are using more than one, you will have to specify the
ChildComponent tag as well.

Default value
We can supply RenderFragment with a default value or set it in code by using an
@ symbol:

@This is a default value;

Building an alert component
To better understand how to use render fragments, let's build an alert component. The
built-in templates are using Bootstrap, and so we will do the same for this component.
Bootstrap has a lot of components that are easy to port to Blazor. When working on big
projects with multiple developers, building components is an easy way to make sure that
everyone in the team is writing code in the same way.

Let's build a simple alert component, based on Bootstrap:

1. Create a folder by right-clicking on MyBlogServerSide project | Add | New folder
and name the folder Components.

2. Create a new Razor file by right-clicking on Components | Add | Razor
component and name the component Alert.razor.

3. Replace the content with the following code in the Alert.razor file:

<div class="alert alert-primary" role="alert">

 A simple primary alert—check it out!

</div>

https://github.com/EngstromJimmy/Blazm.Components
https://github.com/EngstromJimmy/Blazm.Components

102 Creating Advanced Blazor Components

The code is taken from Bootstrap's web page, http://getbootstrap.com, and
it shows an alert that looks like this:

Figure 5.1 – The default look of a Bootstrap alert component
There are two ways in which we could customize this alert component. We could
just add a string parameter for the message. However, since this is a section on
render fragments, we are just going to explore the second option, yes, you guessed
it, render fragments.

4. Add a code section with a RenderFragment property called ChildContent
and replace the alert text with the new property:

<div class="alert alert-primary" role="alert">

 @ChildContent

</div>

@code{

 [Parameter]

 public RenderFragment ChildContent { get; set; }
 =@This is a default value;

}

Now we have RenderFragment with a default value and we are displaying the
fragment between the div tags. We also want to add enum for the different ways in
which you can style the alert box.

5. In the code section, add enum containing the different styles available:

public enum AlertStyle

{

 Primary,

 Secondary,

 Success,

 Danger,

 Warning,

 Info,

 Light,

 Dark

}

http://getbootstrap.com

Using RenderFragment 103

6. Add a parameter/property for the enum style:

[Parameter]

public AlertStyle Style { get; set; }

7. The final step is to update the class attribute for div. The complete file looks like
this. Change the class attribute on the first line:

<div class="@($"alert alert-{Style.ToString().
ToLower()}")" role="alert">

 @ChildContent

</div>

@code{

 [Parameter]

 public RenderFragment ChildContent { get; set; }
 =@This is a default value;

 [Parameter]

 public AlertStyle Style { get; set; }

 public enum AlertStyle

 {

 Primary,

 Secondary,

 Success,

 Danger,

 Warning,

 Info,

 Light,

 Dark

 }

}

8. Right-click on the Pages folder, select Add | Razor component, and name it
AlertTest.razor.

Replace the code with the following snippet:
@page "/alerttest"

@using MyBlogServerSide.Components

<Alert Style="Alert.AlertStyle.Danger">

 This is a test

104 Creating Advanced Blazor Components

</Alert>

<Alert Style="Alert.AlertStyle.Success">

 <ChildContent>

 This is another test

 </ChildContent>

</Alert>

<Alert Style="Alert.AlertStyle.Success"/>

The page is showing three alert components:

The first one has the Danger style, and we are not specifying what property to set
for the This is a test text, but by convention, it is going to use the property
called ChildContent.

In the second one, we have specified the ChildContent property. If you are using
more render fragments in your component, you will have to set them like this, with
full names.

In the last one, we didn't specify anything, which will give the property the default
render fragment that we specified in the component.

9. Run the project and navigate to /AlertTest to see the test page:

Figure 5.2 – Screenshot of the test page

We have finished our first reusable component!

Creating reusable components is the way in which I prefer to create my Blazor sites
because I don't have to write the same code twice. This becomes even more apparent if
you are working in a larger team. It makes it easier for all developers to produce the same
code and end result, and with that get a higher code quality and require fewer tests.

Exploring the new built-in component 105

With .NET 5 came a couple of new components that we didn't have before. In the next
section, we will dig deeper into what they are and how to use them.

Exploring the new built-in component
When Blazor first came out, there were a couple of things that were hard to do and in
some cases, we needed to involve JavaScript to solve the challenge. In this section, we will
take a look at some of the new components that we got in .NET 5.

We will take a look at the following new components or functions:

• Setting the focus of the UI

• Influencing HTML head

• Component virtualization

Setting the focus of the UI
One of my first Blazor blog posts was about how to set the focus on a UI element, but now
this is built into the framework. The previous solution involved JavaScript calls to change
the focus on a UI element.

By using ElementReference, you can now set the focus on the element.

Let's build a component to test the behavior of this new feature:

1. Right-click on the Pages folder, select New | Razor component, and name it
SetFocus.Razor.

2. Open SetFocus.Razor and add a page directive:

@page "/setfocus"

3. Add an element reference:

@code {

 ElementReference textInput;

}

This is exactly what it sounds like, a reference to an element. In this case, it is an
input textbox.

106 Creating Advanced Blazor Components

4. Add the textbox and a button:

<input @ref="textInput" />

<button @onclick="() => textInput.FocusAsync()">Set
focus</button>

By using @ref, you specify a reference to an object that you can use to access the
input box. The button onclick method will execute the FocusAsync()
method and set the focus on the textbox.

5. Press F5 to run the project and then navigate to /setfocus.

6. Press the Set focus button and notice how the textbox gets its focus.

It could seem like a silly example to bring up since this only sets the focus, but it is a really
useful feature and the autofocus HTML attribute won't work for Blazor.

In my blog post, I had another approach. My goal was to set the focus of an element
without having to use code. In the upcoming chapter, Chapter 6, Building Forms with
Validation, we will implement the autofocus feature from my blog post, but using the
new .NET features instead.

The new release of .NET 5 solves a lot of things that we previously had to write with
JavaScript; setting the focus is one example, and influencing HTML head is another.

Influencing HTML head
Sometimes, we want to set the title of our page or change the meta tags for social
networks. The head tag is located in index.html (for WebAssembly) or _host.
cshtml (for server-side), and that part of the page isn't reloaded/rerendered (only the
components within the app component are rerendered). In previous versions of Blazor,
you would have to write code for that yourself using JavaScript.

But .NET has a couple of new components we can use to solve that:

• Title

• Link

• Meta

You only have to add these components to your component to change the title, link,
or meta tag.

This feature never got into the final release of .NET 5. It is still in preview, but it was a very
big deal, so I wanted to keep it in the book.

Exploring the new built-in component 107

To use these components, we will create a page to view one of our blog posts. And we will
use many of the techniques we have learned:

1. First we need to add a reference to the Microsoft.AspNetCore.Components.
Web.Extensions NuGet package. In the solutions explorer beneath the
MyBlogServerSide node, right-click on Dependencies and select Manage
Nuget Packages.

2. Search for Microsoft.AspNetCore.Components.Web.Extensions, select it, and
click Install. This package is only available in preview, so make sure to check the
Include prerelease option.

3. Open Pages/Index.razor.

4. Change the foreach loop to look like this:

@p.Title

We added a link to the title, so we can look at one blog post. Notice how we can use
the @ symbol inside the href attribute to get the ID of the post.

5. Right-click on the Pages folder, select Add | Razor component, and name the
component Post.razor.

6. In the code section, add a parameter that will hold the ID of the post:

[Parameter]

public int BlogPostId { get; set; }

This will hold the ID of the blogpost that comes from the URL.

7. Add a page directive to get the set, the URL, and the ID:

@page "/post/{BlogPostId:int}"

The page directive will set the URL for our blog post to /post/, followed by the
ID of the post. We are also specifying that the type of BlogPostId is an integer.
If the URL contains something that is not an integer, then Blazor will not find the
page in question.

8. We don't have to add a using statement to all our components. Instead,
open _imports.razor and add the following namespaces:

@using MyBlog.Data.Models;

@using MyBlog.Data.Interfaces;

@using Microsoft.AspNetCore.Components.Web.Extensions.
Head

108 Creating Advanced Blazor Components

This will make sure that all the components we build will have these namespaces
by default.

9. Open Post.razor again and, just beneath the page directive, inject the API
(the namespace is now supplied from _imports.razor):

@inject IMyBlogApi api

@inject NavigationManager navman

Our API will now be injected into the component and we can retrieve our blog post.
We also have access to a navigation manager.

10. In the code section, add a property for our blog post:

public BlogPost BlogPost { get; set; }

This is going to contain the blog post we want to show on the page.

11. To load the blog post, add the following code:

protected async override Task OnParametersSetAsync()

{

 BlogPost=await api.GetBlogPostAsync(BlogPostId);

 await base.OnParametersSetAsync();

}

In this case, we are using the OnParameterSet() method. This is just to make
sure that the parameter is set when we get data from the database, as well as to make
sure that the content updates when the parameter changes.

12. We also need to show the post and add the necessary meta tags. To do that, add the
following code just above the code section:

@if (BlogPost != null)

{

 <Title Value="@BlogPost.Title"></Title>

 <Meta property="og:title"

 content="@BlogPost.Title" />

 <Meta property="og:description" content="@(new

 string(BlogPost.Text.Take(100).ToArray()))" />

 <Meta property="og:image" content=

 "@($"{navman.BaseUri}/pathtoanimage.png")" />

 <Meta property="og:url" content="@navman.Uri" />

 <Meta name="twitter:card" content="@(new

Exploring the new built-in component 109

 string(BlogPost.Text.Take(100).ToArray()))" />

 <h3>@BlogPost.Title</h3>

 @((MarkupString)BlogPost.Text)

}

When the page is first loaded, the BlogPost parameter can be null, so we first
need to check whether we should show the content at all.

By adding the Title component, Blazor will set the title of our site to, in this
instance, the title of our blog post.

According to the information gathered by me on Search Engine Optimization
(SEO), the meta tags we have added are the bare minimum for Facebook and
Twitter. We don't have an image for each blog post, but we can have one that is site-
wide (for all blogposts) if we would like. Just change Pathtoanimage.png to the
name of the image and put the image in the wwwroot folder.

If the blog post is loaded, then show an H3 tag with the title and the text beneath
that. You might remember MarkupString from Chapter 4, Understanding Basic
Blazor Components. This will output the string from our blog post without changing
the HTML (not escaping the HTML).

13. Run the project by pressing F5 and navigate to a blog post to see the title change:

Figure 5.3 – Blog post screenshot

Our blog is starting to take form. We have a list of blog posts and we can view a single
blog post; we are, of course, far from done, but well on our way.

110 Creating Advanced Blazor Components

Component virtualization
Virtualize is a new component in Blazor that will make sure that it only renders the
components or rows that are currently visible. If you have a large list of items, showing all
of them will have a big impact on memory. Many third-party component vendors offer
grid components that have the same kind of virtualization function. This component is, in
my opinion, the most exciting thing in the .NET 5 release.

The Virtualize component will calculate how many items can fit on the screen (based
on the size of the window and the height of an item). If you scroll the page, Blazor will add
a div tag before and after the content list, making sure that the scrollbar is showing the
right position (even though there are no items rendered).

The Virtualize component works just like a foreach loop.

The following is the code we currently have in our index.razor file:

 @foreach (var p in posts)

 {

 @p.Title

 }

Right now, it will show all the blog posts we have in our database in a long list. Granted,
we don't have that many right now, but one day we might have a lot of posts.

We can change the code (don't change the code just yet) to use the new Virtualize
component by changing it to the following:

<Virtualize Items="posts" Context="p">

 @p.Title

</Virtualize>

Instead of the foreach loop, we use the Virtualize component and add a render
fragment that shows how each item should be rendered. The Virtualize component
uses RenderFragment<T> which, by default, will send in an item of type T to the
render fragment. In the case of the Virtualize component, the object is going to
be one blog post (since items are List<T> of blog posts). We access each post with
the variable named context. However, we can use the Context property on the
Virtualize component to specify another name, so instead of context, we are now
using p.

Exploring the new built-in component 111

The Virtualize component is even more powerful than this, as we will see in the next
feature that we implement:

1. Open Pages/Index.razor.

2. Delete the OnInitializedAsync method and protected
List<BlogPost> posts = new List<BlogPost>(); we don't need this.

3. Change the loading of the post to Virtualize:

 <Virtualize ItemsProvider="LoadPosts" Context="p">

 @p.Title

 </Virtualize>

In this case, we are using the ItemsProvider delegate that will take care of
getting posts from our API.

We pass in a method called LoadPosts, which we also need to add to the file.

4. Now, let's add the LoadPosts method by adding the following code:

public int totalBlogposts { get; set; }

private async ValueTask<ItemsProviderResult<BlogPost>>
LoadPosts(ItemsProviderRequest request)

{

 if (totalBlogposts == 0)

 {

 totalBlogposts = await
 api.GetBlogPostCountAsync();

 }

 var numblogposts = Math.Min(request.Count,

 totalBlogposts - request.StartIndex);

 var employees = await
 api.GetBlogPostsAsync(numblogposts,
 request.StartIndex);

 return new
 ItemsProviderResult<BlogPost>(employees,
 totalBlogposts);

}

112 Creating Advanced Blazor Components

We add a totalBlogposts property where we store how many posts
we currently have in our database. The LoadPost method returns
ValueTask with ItemsProviderResult<Blogpost>. The method has
ItemsProviderRequest as a parameter, which contains the number of posts
the Virtualize component wants and how many it wants to skip.

If we don't already know how many posts in total we have, we need to retrieve that
information from our API by calling the GetBlogPostCountAsync method.
Then, we need to figure out how many posts we should get; either we get as many
posts as we need, or we get all the posts that are remaining (whatever value is the
smallest).

Then, we make a call to our API to get the actual posts by calling
GetBlogPostsAsync and return ItemsProviderResult.

Now we have implemented a Virtualize component that will load and render only the
number of blog posts needed to fill the screen.

Summary
In this chapter, we looked at more advanced scenarios for building components. Building
components is what Blazor is all about. Components also make it easy to make changes
along the way because there is only one point where you have to implement the change.
We also implemented our first reusable component, which will help us to maintain the
same standard across the entire team and reduce duplicated code.

We also used some of the new features in .NET 5 for Blazor to load and display data.

In the next chapter, we will take a look at forms and validation to start building the
administration part of our blog.

6
Building Forms with

Validation
In this chapter, we will learn about creating forms and validating them, which is a great
opportunity to build our admin interface where we can manage our blog posts. We
are also going to build multiple reusable components and learn about some of the new
functionalities in .NET 5 for Blazor.

This is going to be a super fun chapter and we will use a lot of the things we learned up
until now.

In this chapter, we will cover the following topics:

• Exploring form elements

• Adding validation

• Custom validation class attributes

• Building an admin interface

114 Building Forms with Validation

Technical requirements
Make sure you have followed the previous chapters or use the Ch5 folder as a
starting point.

You can find the source code for this chapter's end result at https://github.
com/PacktPublishing/Web-Development-with-Blazor/tree/master/
Chapter06.

Exploring form elements
There are many form elements in HTML, and we can use them all in Blazor. In the end,
what Blazor will output is HTML.

Blazor does have components that will add to the functionality, so we can and should try
to use those components instead of HTML elements. This will give us great functionality
for free; we will come back to this later in this chapter.

Blazor offers the following components:

• EditForm

• InputBase<>

• InputCheckbox

• InputDate<TValue>

• InputNumber<TValue>

• InputSelect<TValue>

• InputText

• InputTextArea

• InputRadio

• InputRadioGroup

• ValidationMessage

• ValidationSummary

Let's go through them all.

https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter06
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter06
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter06

Exploring form elements 115

EditForm
EditForm renders as a form tag but it has a lot more functionalities.

First, we are not going to have an action or method like with traditional form tags; Blazor
will handle all of that.

EditForm will create an EditContext instance as a cascading value so that all
the components you put inside of EditForm will access the same EditContext.
EditContext will track the metadata when it comes to the editing process, such as what
fields have been edited, and keep track of any validation messages.

You need to assign either a model (a class that you wish to edit) or an EditContext
instance.

For most use cases, assigning a model is the way to go, but for more advanced scenarios
you might want to be able to trigger EditContext.Validate(), for example, to
validate all the controls connected to EditContext.

EditForm has the following events that you can use to handle form submissions:

• OnValidSubmit gets triggered when the data in the form validates correctly (we
will come back to validation in just a bit).

• OnInvalidSubmit gets triggered if the form does not validate correctly.

• OnSubmit gets triggered when the form is submitted, regardless of whether
the form validates correctly or not. Use OnSubmit if you want to control the
validation yourself.

Let's take a look at an example.

Consider a class that holds a person; the class has a name and an age for that person and
looks like this:

public class Person

{

 public string Name { get; set; }

 public int Age { get; set; }

}

116 Building Forms with Validation

EditForm for this class would look like this (without any other elements for now):

<EditForm Model="personmodel" OnValidSubmit="validSubmit">

 ...

 <button type="submit">Submit</button>

</EditForm>

@code {

 Person personmodel = new Person();

 private Task validSubmit()

 {

 //Do database stuff

 return Task.CompletedTask;

 }

}

EditForm specifies a model (in this case personmodel), and we are listening to the
OnValidSubmit event.

The Submit button is a regular HTML button that is not a specific Blazor component.

InputBase<>
All the Blazor input classes derive from the InputBase class. It has a bunch of
things that we can use for all the input components; we will go through the most
important ones.

InputBase handles AdditionalAttributes, which means that if we add any other
attributes to the tag, they will automatically get transferred to the output. This means that
the components that derive from this class can leverage any HTML attributes, since they
will be part of the output.

InputBase has properties for Value, which we can bind to, and an event callback for
when the value changes called ValueChanged.

We can also change DisplayName so that the automated validation messages will reflect
the correct name and not the name of the property, which is the default behavior.

The DisplayName property is not supported by all controls. Some properties are only
used inside of the component, and we will come back to those in a bit.

Exploring form elements 117

InputCheckbox
The InputCheckbox component will render as <input type="checkbox">.

InputDate<TValue>
The InputDate component will render as <input type="date">. We can use
DateTime and DateTimeOffset as values for the InputDate component.

There is no way to format the date; it will use the web browser's current setting. This
behavior is by design and is part of the HTML5 spec.

InputNumber<TValue>
The InputNumber component will render as <input type="number">. We can
use Int32, Int64, Single, Double, and Decimal as values for the InputNumber
component.

InputSelect<TValue>
The InputSelect component will render as <select>. We will create InputSelect
later in this chapter so I won't go into further detail here.

InputText
The InputText component will render as <input type="text">.

InputTextArea
The InputSelect component will render as <textarea>. In this chapter, we will
build our own version of this control.

InputRadio
The InputRadio component will render as <input type="radio">.

InputRadioGroup
The InputRadioGroup component will render as <Input type="radio">.

As we can see there is a Blazor component for almost all the HTML form controls with
some added functionality such as validation which we will see in the next section.

118 Building Forms with Validation

Adding validation
We have already touched on the subject of validation; there are some built-in
functionalities in the input components as well as EditForm to handle validation.

One way to add validation to our form is to use DataAnnotations. By using
data annotations, we don't have to write any custom logic to make sure the data
in the form is correct; we can instead add attributes to the data model and let
DataAnnotationsValidator take care of the rest.

There are a bunch of DataAnnotations instances in .NET already that we can use; we
can also build our own annotations.

Some of the built-in data annotations are as follows:

• Required: Makes the field required

• Email: Will check that the entered value is an email address

• MaxLength: Will check that the number of characters is not exceeded

• Range: Will check that the value is within a certain range

There are many more annotations that can help us validate our data. To test this out, let's
add data annotations to our data classes:

1. In the MyBlog.Data project, open Models/BlogPost.cs.

2. At the top of the file, add a reference to System.ComponentModel.
DataAnnotations:

using System.ComponentModel.DataAnnotations;

3. Add the Required and MinLength attributes to the Title property:

[Required]

[MinLength(5)]

public string Title { get; set; }

The Required attribute will make sure we can't leave the title empty, and
MinLength will make sure it has at least 5 characters:

4. Add the Required attribute to the Text property:

[Required]

public string Text { get; set; }

Adding validation 119

The Required attribute will make sure the Text property cannot be empty, which
makes sense – why would we create an empty blog post?

5. Open Models/Category.cs, and at the top of the file, add a reference to
System.ComponentModel.DataAnnotations.

6. Add the Required attribute to the Name property:

[Required]

public string Name { get; set; }

The Required attribute will make sure we can't leave the name empty.

7. Open Models/Tag.cs, and at the top of the file, add a reference to System.
ComponentModel.DataAnnotations.

8. Add the Required attribute to the Name property:

[Required]

public string Name { get; set; }

The Required attribute will make sure we can't leave the name empty.
Great, now our data models have validation built into them. We need to give our users
feedback on what went wrong with the validation.

We can do that by using the ValidationMessage or ValidationSummary
components.

ValidationMessage
The ValidationMessage component can show us individual error messages for
a specific property. We want to use this component to show validation errors under
a form element.

To add a ValidationMessage component, we have to specify the For property with
the name of the property we want to show the validation errors for:

<ValidationMessage For="@(() => model.Name)"/>

ValidationSummary
The ValidationSummary component will show all the validation errors as a list for the
entire EditContext.

120 Building Forms with Validation

I prefer to show the error close to the problem so it's clear to the user where the
issue is. But we also have the option to show the validation errors as a list using
ValidationSummary.

To make sure our input controls match the Bootstrap theme (or whatever theme we might
be using), we can create our own Custom validation class.

Custom validation class attributes
By simply using the edit form, input components, and DataAnnotationValidator,
the framework will automatically add classes to the components when it's valid and when
it's not valid.

By default, these classes are .valid and .invalid. In .NET 5, we are given a way to
customize these class names ourselves.

When using Bootstrap, the default class names are .is-valid and .is-invalid and
the class names must also have .form-control to get the right styles.

The component we are building next will help us to get the right Bootstrap styling on all of
our form components.

We will create our own FieldCssClassProvider to customize what classes Blazor
will use:

1. In the MyBlogServerSide project, right-click in the Components folder and
select Add class, and name the class BootstrapFieldCssClassProvider.

2. Open the new class and add the following code:

using Microsoft.AspNetCore.Components.Forms;

using System.Linq;

namespace MyBlogServerSide.Components

{

 public class BootstrapFieldCssClassProvider :
 FieldCssClassProvider

 {

 public override string GetFieldCssClass
 (EditContext editContext, in FieldIdentifier
 fieldIdentifier)

 {

Custom validation class attributes 121

 var isValid =
 !editContext.GetValidationMessages
 (fieldIdentifier).Any();

 var isModified =
 editContext.IsModified(fieldIdentifier);

 return (isModified, isValid) switch

 {

 (true, true) => "form-control modified

 is-valid",

 (true, false) => "form-control

 modified is-invalid",

 (false, true) => "form-control",

 (false, false) => "form-control"

 };

 }

 }

}

BootstrapFieldCssClassProvider needs an EditContext instance
to work.

The code will check whether the form (or EditContext to be specific) is
valid and whether or not it has been modified. Based on that, it returns the
correct CSS classes.

It returns the form control for all elements; that way, we don't have to add it to every
element in the form. We could validate an untouched form as valid or invalid, but
we don't want it to show that the form is OK just because it hasn't been changed yet.

3. We need to get the EditContext instance from our EditForm and then set
FieldCssClassProvider on EditContext as follows:

CurrentEditContext.SetFieldCssClassProvider(provider);

Next, we are going to do that in a more elegant way (in my humble opinion) with
the CustomCssClassProvider we will create next.

Earlier in this chapter, I mentioned that EditForm is exposing its EditContext
as CascadingValue.

122 Building Forms with Validation

That means we will build a component that we can just put inside of our EditForm and
access EditContext that way:

1. In the MyBlogServerSide project, right-click on the Components folder and
select Add class, and name the class CustomCssClassProvider.

2. Open the new file and add the following code:

using Microsoft.AspNetCore.Components;

using Microsoft.AspNetCore.Components.Forms;

using System;

namespace MyBlogServerSide.Components

{

 public class CustomCssClassProvider<ProviderType>:
 ComponentBase where ProviderType:
 FieldCssClassProvider,new()

 {

 [CascadingParameter]

 EditContext? CurrentEditContext { get; set; }

 public ProviderType Provider { get; set; } =
 new ProviderType();

 protected override void OnInitialized()

 {

 if (CurrentEditContext == null)

 {

 throw new InvalidOperationException

 ($"{nameof(DataAnnotationsValidator)}
 requires a cascading " +
 $"parameter of type
 {nameof(EditContext)}.
 For example, you can use
 {nameof(DataAnnotationsValidator)}" +
 $"inside an EditForm.");

 }

 CurrentEditContext.SetFieldCssClassProvider

 (Provider);

 }

 }

}

Building an admin interface 123

This is a generic component that takes a type value, in this case, the type
of Provider.

We specified that type must inherit from FieldCssClassProvider and must
have a constructor without parameters.

The component is inheriting from ComponentBase, which makes it possible to
place the component inside of a Blazor component.

We have a Cascading parameter that will be populated from EditForm. We
throw an exception if EditContext is missing for some reason (for example, if we
place the component outside of EditForm.

Finally, we set FieldCssClassProvider on EditContext.
To use the component, we just have to add the following code inside of our EditForm
(don't worry, we will create an EditForm soon):

<CustomCssClassProvider
ProviderType="BootstrapFieldCssClassProvider"/>

We simply provide our CustomCssClassProvider component with the right
ProviderType BootstrapFieldCssClassProvider.

Now, we have a component that will make our form controls look like Bootstrap controls.
Next, it's time to put that into practice and create a couple of forms by building our admin
interface.

Building an admin interface
Now it's time to build a simple admin interface for our blog.

We need to be able to do the following:

• List categories

• Edit categories

• List tags

• Edit tags

• List blog posts

• Edit blog posts

124 Building Forms with Validation

If we look at the preceding list, we might notice that some of the things seem similar –
perhaps we can build components for those. Categories and tags are very similar; they
have names, and the name is the only thing we should be able to edit.

Let's make a component for that. The component is going to be responsible for listing,
adding, deleting, and updating the object.

Since the object we are working with is either Category or Tag, we need to be able to
call different APIs depending on the object, so our component needs to be generic:

1. In the MyBlogServerSide project, right-click on the Components folder and
select Add | Razor component, then name the component ItemList.razor.

2. Open the newly created file and in the code section, add the following lines
of code:

[Parameter]

public List<ItemType> Items { get; set; } = new
List<ItemType>();

[Parameter]

public RenderFragment<ItemType> ItemTemplate { get; set;
}

We need two parameters: a list where we can add all the items and an
ItemTemplate instance that we can use to change how we want the item
to be shown.

In this case, we are using RenderFragment<T>, which will give us access to the
item inside of the template (things will become clearer as soon as we implement it).

3. We also need a couple of events; add the following code to the code section:

[Parameter]

public EventCallback<ItemType> DeleteEvent { get; set; }

[Parameter]

public EventCallback<ItemType> SelectEvent { get; set; }

We added two events; the first is when we delete a tag or a category. We will
send an event to the parent component where we can add the code needed to
delete the item.

The second one is when we select an item so that we can edit the item.

Building an admin interface 125

4. Now it's time to add the UI; replace <h3>ItemList<h3> with the following code
at the top of the file:

@typeparam ItemType

@using System.Collections.Generic

<h3>List</h3>

<table>

 <Virtualize Items="@Items" Context="item">

 <tr>

 <td><button class="btn btn-primary"
 @onclick="@(()=>
 {SelectEvent.InvokeAsync(item); })">
 Select</button>

 </td>

 <td>@ItemTemplate(item)</td>

 <td><button class="btn btn-danger"
 @onclick="@(()=>
 {DeleteEvent.InvokeAsync(item);})">
 Delete</button>

 </td>

 </tr>

 </Virtualize>

</table>

The first line with @typeparam is to make the component generic, and the variable
holding the generic type is called ItemType.

If we look back to Step 2, we'll notice that we used the variable for the lists and
RenderFragment.

Then, we use the new Virtualize component to list our items; to be fair, we
might not have that many categories or tags, but why not use it when we can? We set
the Items property to "Items" (which is the name of our list) and the Context
parameter to "item".

We can give it whatever name we want; we're only going to use it inside of the
Virtualize render template.

We added two buttons that simply invoke the EventCallback instance we added
in Step 3. Between those buttons, we added @ItemTemplate(item); we want
Blazor to render the template, but we also send the current item in the loop.

That means that we have access to the value of the item inside of our template.

126 Building Forms with Validation

Listing and editing categories
With our new component it's now time to create a component for listing and editing
our categories.

1. In the MyBlogServerSide project, right-click on the Pages folder, select
Add | New folder, and name the folder Admin.

2. Right-click on the Pages/Admin folder and select Add | Razor component,
then name the component CategoryList.razor.

3. At the top of the component, replace <h3>CategoryList</h3> with the
following code:

@page "/admin/categories"

@using MyBlogServerSide.Components

@inject IMyBlogApi api

<h3>Categories</h3>

We started with the @page directive, telling Blazor that if we navigate to the URL
"admin/categories", we will get to the CategoryList.Razor component.

We will add a using statement and then inject our API.

4. The next step is to add a form where we can edit the categories. Add the following
code under the code from the previous step:

<EditForm OnValidSubmit="Save" Model="Item">

 <DataAnnotationsValidator />

 <CustomCssClassProvider
 ProviderType="BootstrapFieldCssClassProvider" />

 <InputText @bind-Value="@Item.Name" />

 <ValidationMessage For="@(()=>Item.Name)" />

 <button class="btn btn-success"
 type="submit">Save</button>

</EditForm>

We added EditForm, which will execute the Save method if the form validates
OK. For validation, we added DataAnnotationsValidator, which will
validate the supplied data against the annotations we added to the Tag and
Category classes.

Since we are using Bootstrap, we want our form controls to look the same, so we
added CustomCssClassProvider that we created earlier in this chapter.

Building an admin interface 127

We added InputText and connected it to a Category object called Item
(which we will add in a just a second).

Below that, we added ValidationMessage, which will show any errors for the
name property, and then a Submit button.

5. Now it's time to add our ItemList component; under the code we added in the
previous step, add this code:

<ItemList Items="Items" DeleteEvent="@Delete"
SelectEvent="@Select" ItemType="Category">

 <ItemTemplate>

 @{

 var item = context as Category;

 if (item != null)

 {

 @item.Name;

 }

 }

 </ItemTemplate>

</ItemList>

We added our component, and we bind the Items property to a list of items
(we will create that list in the next step).

We bind the Select and Delete events to methods and we specify the type of the
list in the ItemType property. Then, we have ItemTemplate. Since we are using
RenderFragment<T>, we now have access to a variable called context.

We convert that variable to a category and print out the name of the category. This is
the template for each item that will be shown on the list.

6. Finally, we add the following code to the code section:

@code {

 private List<Category> Items { get; set; } = new
 List<Category>();

 public Category Item { get; set; } = new Category();

 protected async override Task OnInitializedAsync()

 {

 Items = await api.GetCategoriesAsync();

 await base.OnInitializedAsync();

128 Building Forms with Validation

 }

 private async Task Delete(Category category)

 {

 try

 {

 await api.DeleteCategoryAsync(category);

 Items.Remove(category);

 }

 catch { }

 }

 private async Task Save()

 {

 try

 {

 if (Item.Id == 0)

 {

 Items.Add(Item);

 }

 await api.SaveCategoryAsync(Item);

 Item = new Category();

 }

 catch { }

 }

 private Task Select(Category category)

 {

 try

 {

 Item = category;

 }

 catch { }

 return Task.CompletedTask;

 }

}

We added a list to hold all our categories and a variable that holds one item (the
item currently being edited). We use OnInitializedAsync to load all the
categories from the API.

Building an admin interface 129

The Delete and Save methods simply call the API's corresponding method,
and the Select method takes the provided item and puts it into the item variable
(ready to be edited).

7. Run the project and navigate to /admin/categories.

8. Try to add, edit, and delete a category as shown in Figure 6.1:

Figure 6.1 – The edit category view

Now we need a component for listing and editing tags as well – it is pretty much the same
thing, but we need to use Tag instead of Category.

Listing and editing tags
We just created a component for listing and editing Categories, now we need to create a
component to list and edit Tags.

1. Right-click on the Pages/Admin folder and select Add | Razor component, then
name the component TagList.razor.

2. At the top of the component, replace <h3>TagList</h3> with the
following code:

@page "/admin/tags"

@using MyBlogServerSide.Components

@inject IMyBlogApi api

<h3>Tags</h3>

We started with the @page directive telling Blazor that if we navigate to the URL
"admin/tags", we will get to the TagList.Razor component.

We add a using statement and then inject our API.

130 Building Forms with Validation

3. The next step is to add a form where we can edit the tags. Add the following code
under the code from the previous step:

<EditForm OnValidSubmit="Save" Model="Item">

 <DataAnnotationsValidator />

 <CustomCssClassProvider

 ProviderType="BootstrapFieldCssClassProvider" />

 <InputText @bind-Value="@Item.Name" />

 <ValidationMessage For="@(()=>Item.Name)" />

 <button class="btn btn-success"
 type="submit">Save</button>

</EditForm>

We added EditForm, which will execute the Save method if the form validates
OK. For validation, we added DataAnnotationsValidator, which will
validate the supplied data against the annotations we added to the Tag and
Category classes.

Since we are using Bootstrap, we want our form controls to look the same, so we
added CustomCssClassProvider, which we created earlier in this chapter.

We added InputText and connected it to a Tag object called Item (which we
will add in a moment).

Below that, we add a ValidationMessage instance that will show any errors for
the name property and then a Submit button.

4. Now it's time to add our ItemList component. Under the code we added in the
previous step, add this code:

<ItemList Items="Items" DeleteEvent="@Delete"
SelectEvent="@Select" ItemType="Tag">

 <ItemTemplate>

 @{

 var item = context as Tag;

 if(item!=null)

 {

 @item.Name;

 }

 }

 </ItemTemplate>

</ItemList>

Building an admin interface 131

We added our component, and we bind the Items property to a list of items (we
will create that list in the next step). We bind the Select and Delete events to
methods and we specify the type of List in the ItemType property.

Then we have ItemTemplate; since we are using RenderFragment<T>, we
now have access to a variable called context. We convert that variable to a tag and
print out the name of the tag.

This is the template for each item that will be shown in the list.

5. Finally, we add the following code under the code section:

@code {

 private List<Tag> Items { get; set; } = new
 List<Tag>();

 public Tag Item { get; set; } = new Tag();

 protected async override Task OnInitializedAsync()

 {

 Items = await api.GetTagsAsync();

 await base.OnInitializedAsync();

 }

 private async Task Delete(Tag tag)

 {

 try

 {

 await api.DeleteTagAsync(tag);

 Items.Remove(tag);

 }

 catch { }

 }

 private async Task Save()

 {

 try

 {

 if (Item.Id == 0)

 {

 Items.Add(Item);

 }

 await api.SaveTagAsync(Item);

132 Building Forms with Validation

 Item = new Tag();

 }

 catch { }

 }

 private Task Select(Tag tag)

 {

 try

 {

 Item = tag;

 }

 catch { }

 return Task.CompletedTask;

 }

}

We added a list to hold all our tags and a variable that holds one item (the item
currently being edited). We use OnInitializedAsync to load all the tags from
the API.

The Delete and Save methods simply call the API's corresponding method and
the Select method takes the provided item and puts it into the Item variable
(ready to be edited).

6. Run the project and navigate to /admin/tags.

7. Try to add, edit, and delete a tag as shown in Figure 6.2:

Figure 6.2 – The edit tag view

Building an admin interface 133

Now we only have two things left: we need ways to list and edit blog posts.

Listing and editing blog posts
Let's start with listing and editing blog posts:

1. Right-click on the Pages/Admin folder, select Add | Razor component, and name
the component BlogPostList.razor.

2. At the top of the BlogPostList.razor file, replace <h3>BlogPostList</
h3> with the following code:

@page "/admin/blogposts"

@inject IMyBlogApi api

New blog post

 <Virtualize ItemsProvider="LoadPosts" Context="p">

 @p.PublishDate

 @p.Title

 </Virtualize>

We added a page directive, injected our API, and listed the blog posts using the
Virtualize component.

We also linked the posts to a URL with the Id instance of the blog post.

3. Replace the code section with the following code:

@code{

 public int TotalBlogposts { get; set; }

 private async ValueTask<ItemsProviderResult<BlogPost>>
 LoadPosts(ItemsProviderRequest request)

 {

 if (TotalBlogposts == 0)

 {

 TotalBlogposts = await

 api.GetBlogPostCountAsync();

 }

 var numblogposts = Math.Min(request.Count,
 TotalBlogposts - request.StartIndex);

134 Building Forms with Validation

 var posts = await
 api.GetBlogPostsAsync(numblogposts,

 request.StartIndex);

 return new ItemsProviderResult<BlogPost>(posts,
 TotalBlogposts);

 }

}

We added a method that can load posts from the database. This code is identical to
the code we have on our Index page. Now there is only one thing left in the chapter:
adding the page where we can edit the blog post.

A very popular way of writing blog posts is using Markdown; our blog engine
will support that. Since Blazor supports any .NET Standard DLLs, we will add an
existing library called Markdig.

This is the same engine that Microsoft uses for their docs site.
We can extend Markdig with different extensions (as Microsoft has done), but let's keep
this simple and only add support for Markdown without all the fancy extensions:

1. Under the MyBlogServerSide project, right-click on the Dependencies node in
the Solution Explorer and select Manage NuGet Packages.

2. Search for Markdig and click Install as shown in Figure 6.3:

Figure 6.3 – Add NuGet dialog

3. Right-click on the components folder and select Add | Class, then name the
component InputTextAreaOnInput.cs.

4. Open the new file and add the following code:

using System.Diagnostics.CodeAnalysis;

using Microsoft.AspNetCore.Components.Rendering;

namespace Microsoft.AspNetCore.Components.Forms

{

Building an admin interface 135

 public class InputTextAreaOnInput :

 InputBase<string?>

 {

 protected override void
 BuildRenderTree(RenderTreeBuilder builder)

 {

 builder.OpenElement(0, "textarea");

 builder.AddMultipleAttributes(1,
 AdditionalAttributes);

 builder.AddAttribute(2, "class",
 CssClass);

 builder.AddAttribute(3, "value",
 BindConverter.FormatValue(CurrentValue));

 builder.AddAttribute(4, "oninput",
 EventCallback.Factory.CreateBinder
 <string?>(this, __value =>
 CurrentValueAsString = __value,
 CurrentValueAsString));

 builder.CloseElement();

 }

 protected override bool
 TryParseValueFromString(string? value,
 out string? result, [NotNullWhen(false)]
 out string? validationErrorMessage)

 {

 result = value;

 validationErrorMessage = null;

 return true;

 }

 }

}

The preceding code is taken from Microsoft's GitHub repository; it is how they
implement the InputTextArea component.

In their build system, they can't handle .razor files, so that's why they implement
the code this way. There is only one change made in this file and that is oninput,
which is used to say OnChange.

136 Building Forms with Validation

For most cases, OnChange is going to be just fine, which means when I leave the
textbox, the value will be updated (and trigger validations). But in our case, we
want the preview of the HTML to be updated in real time, which is why we had to
implement our own.

One option could have been to not use the InputTextArea component and
instead use the TextArea tag, but then we would lose the validation highlighting.
If we ever need to customize the behavior on an input control, this is the way to go.

I recommend using .razor files over .cs files if you are going to make a lot of
changes to the implementation.

5. Right-click on the Pages/Admin folder, select Add | Razor component, and name
the component BlogPostEdit.razor.

6. At the top of the BlogPostEdit.razor file, replace <h3>BlogPostEdit</
h3> with the following code:

@page "/admin/blogposts/new"

@page "/admin/blogposts/{Id:int}"

@inject IMyBlogApi api

@inject NavigationManager manager

@using MyBlogServerSide.Components

@using Markdig;

We add two different page directives because we want to be able to create a new
blog post as well as supply an ID to edit an already existing one. If we do not supply
an ID, the Id parameter will be null (or the default).

We inject our API and NavigationManager as well as adding using statements.

7. Now we need to add the form; add the following code:

<EditForm Model="Post" OnValidSubmit="SavePost">

 <DataAnnotationsValidator />

 <CustomCssClassProvider
 ProviderType="BootstrapFieldCssClassProvider" />

 <InputText @bind-Value="Post.Title"></InputText>

 <InputDate @bind-Value="Post.PublishDate">
 </InputDate>

 <InputSelect @bind-Value="selectedCategory">

 <option value="0" disabled>None selected

 </option>

Building an admin interface 137

 @foreach (var category in Categories)

 {

 <option value="@category.Id">@category.Name </option>

}

 </InputSelect>

 @foreach (var tag in Tags)

 {

 @tag.Name

 @if (Post.Tags.Any(t => t.Id == tag.Id))

 {

 <button type="button" @onclick="@(() => {
 Post.Tags.Remove(Post.Tags.Single
 (t=>t.Id==tag.Id)); })">Remove
 </button>

 }

 else

 {

 <button type="button" @onclick="@(()
 => { Post.Tags.Add(tag); })">Add
 </button>

 }

 }

 <InputTextAreaOnInput @bind-Value="Post.Text"
 @onkeyup="UpdateHTML">
 </InputTextAreaOnInput>

 <button type="submit" class="btn btn-success">
 Save</button>

 </EditForm>

138 Building Forms with Validation

We add EditForm, and when we submit the form (if it is valid), we execute the
SavePost method. We add DataAnnotationValidator, which will validate
our model against the data annotations in the class.

We add customCssClassProvider so that we get the correct Bootstrap class
names. Then, we add boxes for the title, publish date, category, tags, and, last but not
least, the text (the content of the blog post).

Finally, we add the text using the component we created in Step 4 (the component
that updates for each keystroke).

We also hook up the @onkeyup event so that we can update the preview for
each keystroke.

8. We also need to add our SavePost method. Add the following code somewhere in
the code section:

public async Task SavePost()

{

 if (selectedCategory != 0 && Categories != null)

 {

 var category = Categories.FirstOrDefault(c =>
 c.Id == selectedCategory);

 if (category != null)

 {

 Post.Category = category;

 }

 }

 await api.SaveBlogPostAsync(Post);

 manager.NavigateTo("/admin/blogposts");

}

9. Now it's time to show the preview. Add the following code just below EditForm:

@((MarkupString)markDownAsHTML)

We use MarkupString to make sure Blazor outputs the HTML code without
escaping the characters. You might remember that from Chapter 4, Understanding
Basic Blazor Components.

Building an admin interface 139

10. We also need some variables. Add the following code in the code section:

[Parameter]

public int? Id { get; set; }

BlogPost Post { get; set; } = new BlogPost();

List<Category>? Categories { get; set; }

List<Tag>? Tags { get; set; }

int selectedCategory = 0;

string? markDownAsHTML { get; set; }

We added a parameter for the ID of the blog post (if we want to edit one), a variable
to hold the post we are editing, one that holds all the categories, and one that holds
all the tags. We also added a variable that holds the currently selected category and
one that holds the Markdown converted to HTML.

11. Now it is time to set up Markdig. Add the following code somewhere in the
code section:

MarkdownPipeline pipeline;

protected override Task OnInitializedAsync()

{

 pipeline = new MarkdownPipelineBuilder()

 .UseEmojiAndSmiley()

 .Build();

 return base.OnInitializedAsync();

}

To configure Markdig, we need to create a pipeline. As I mentioned earlier in the
chapter, this is the engine Microsoft uses for their docs site. It has many extensions
available, including source code highlighting and emoticons.

To make it a little more fun, we added emoticons as well to the pipeline.

12. We also need to add code to load the data (blog post, categories, and tags). Add the
following methods in the code section:

protected void UpdateHTML()

{

 markDownAsHTML =
 Markdig.Markdown.ToHtml(Post.Text, pipeline);

}

bool hasTag(MyBlog.Data.Models.Tag tag)

140 Building Forms with Validation

{

 return Post.Tags.Contains(tag);

}

protected override async Task OnParametersSetAsync()

{

 if (Id != null)

 {

 Post = await api.GetBlogPostAsync(Id.Value);

 if (Post.Category != null)

 {

 selectedCategory = Post.Category.Id;

 }

 UpdateHTML();

 }

 Categories = await api.GetCategoriesAsync();

 Tags = await api.GetTagsAsync();

 base.OnParametersSet();

}

13. Now run the site, navigate to /admin/blogposts, click on a blog post to edit
it, and test the new Markdown support. Figure 6.4 shows the edit page with
Markdown support:

Figure 6.4 – Edit page with Markdown support

Summary 141

We have still got one more thing to do: we need to make sure that the blog post page
shows a converted HTML version of the Markdown.

14. Open /Pages/Post.razor and add the following using statement at the top
of the file:

@using Markdig;

15. Add the following code to the code section:

MarkdownPipeline pipeline;

protected override Task OnInitializedAsync()

{

 pipeline = new MarkdownPipelineBuilder()

 .UseEmojiAndSmiley()

 .Build();

 return base.OnInitializedAsync();

}

16. Replace the following row:

@((MarkupString)BlogPost.Text)

Replace it with this:
@((MarkupString)Markdig.Markdown.ToHtml(BlogPost.Text,
pipeline))

Great job! Now we have an admin interface up and running so that we can start writing
blog posts.

Summary
In this chapter, we learned how to create forms. We made API calls to get and save data.

We built custom input controls and leveraged some of the new functionality in .NET 5
to get Bootstrap styling on our controls. Most business apps use forms, and by using data
annotations, we can add logic close to the data (and even use annotations when we create
the database, as we did in Chapter 3, Introducing Entity Framework Core).

142 Building Forms with Validation

The functionality that Blazor offers when it comes to validation and input controls will
help us build amazing applications and will give our users a great experience. You may
notice that right now the admin pages are wide open, so the next step is going to be
securing our blog with login, but we will come back to that in Chapter 8, Authentication
and Authorization.

In the next chapter, we will create an API so that we can get data in our Blazor
WebAssembly project.

7
Creating an API

Blazor WebAssembly needs to be able to retrieve data and also change our data. For that
to work, we need to have an API with which we can access the database. In this chapter,
we will create a Web API.

When we are using Blazor Server, the API will be secured together with the page (if we
add an Authorize attribute), so we get that for free. But with WebAssembly, everything
will be executed in the browser, so we need something that WebAssembly can
communicate with to update the database on the server.

To do this, we will cover need to cover three topics. In this chapter, we will cover the
first two:

• Creating the service

• Creating the client

The third topic is Calling the API, but we won't cover that part in this chapter; instead, we
will come back to it in Chapter 9, Sharing Code and Resources.

Technical requirements
Make sure you have read the previous chapters, or use the Ch6 folder as a starting point.

You can find the source code for this chapter's end result at https://github.
com/PacktPublishing/Web-Development-with-Blazor/tree/master/
Chapter07.

https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter07
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter07
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter07

144 Creating an API

Creating the service
There are many ways to create a service, such as via REST or perhaps gRPC. In this book,
we will cover REST.

For those who haven't worked with REST before, REST stands for REpresentational State
Transfer. Simply put, it is a way for machines to talk to other machines using HTTP.

With REST, we use different HTTP verbs for different operations. It could look something
like this:

This is what we are going to implement for tags, categories, and blog posts.

Since the API takes care of whether the post should be created, we'll cheat a little bit and
only implement Put (replace) because we don't know whether we are creating or updating
the data.

The API will only be used by Blazor WebAssembly, so we will implement the API in the
MyBlogWebAssembly.Server project.

Adding database access
Execute the following steps to provide database access:

1. In the MyBlogWebAssembly.Server project, open Startup.cs.

2. In the Configure services method, add the following lines (at the top of the
method):

services.AddDbContextFactory<MyBlogDbContext>(opt => opt.
UseSqlite($"Data Source=../../MyBlog.db"));

services.AddScoped<IMyBlogApi, MyBlogApiServerSide>();

This is the same database configuration as with the MyBlogServerSide project.

Creating the service 145

We are even pointing to the same database, but since the folder structure is one level
deeper for the Blazor WebAssembly project, we use ..\..\MyBlog.db to reach
the existing database.

3. Add a reference to the MyBlog.Data project by right-clicking Dependencies
beneath the MyBlogWebAssembly.Server project and selecting Add project
reference.

4. Check MyBlog.Data and click Ok.

5. Add the following namespaces:

using MyBlog.Data;

using MyBlog.Data.Interfaces;

using Microsoft.EntityFrameworkCore;

Now we have added access to the classes we have in the MyBlog.Data project.

We have configured it so that if we ask for an instance of IMyBlogApi, we will get an
instance of the MyBlogApiServerSide class. This is because we are on the server side,
so the API can have direct access to the database.

Now, let's create the API. In the Controllers folder, we already have an API to get
weather forecast data.

Adding the API controller
Execute the following steps to create the API:

1. In the MyBlogWebAssembly.Server project, right-click on the Controllers
folder and select Add | Class. Name the file MyBlogApiController.cs.

2. Add a using statement at the top of the file:

using Microsoft.AspNetCore.Mvc;

using MyBlog.Data.Interfaces;

using MyBlog.Data.Models;

using System.Collections.Generic;

using Microsoft.AspNetCore.Authorization;

3. Inherit from ControllerBase and add attributes. The class should look like this:

[ApiController]

[Route("[controller]")]

public class MyBlogApiController:ControllerBase

146 Creating an API

{

}

4. Now we need to access the data, and we will do that through the server-side API.
Add the following code inside the class we just created:

internal readonly IMyBlogApi api;

public MyBlogApiController(IMyBlogApi api)

{

 this.api = api;

}

Now we can access the data through the api variable.

5. Next, we will add the code to get blog posts. Add the following code under the code
we just added:

[HttpGet]

[Route("BlogPosts")]

public async Task<List<BlogPost>> GetBlogPostsAsync(int
numberofposts, int startindex)

{

 return await api.GetBlogPostsAsync(numberofposts,
 startindex);

}

We have created a method that returns the data directly from the database (the same
API the Blazor Server project is using).

Go to the following URL: https://localhost:5001/MyBlogApi/
BlogPosts?numberofposts=10&startindex=0 (the port number might be
something else). Make sure to start the MyBlogWebAssembly.Server project.
We will get some JSON back with a list of our blog posts.

There are a couple of things worth noting. The method is called
GetBlogPostsAsync. We choose to have the same name as the API, but the URL
is not the same as the method name; it is specified by the Route attribute. We use
the same method names as in IMyBlogApi; it is easier to follow the code when
everything is named the same.

We also specify the HttpGet attribute, which will make sure the method only runs
when we are using the Get verb.

Creating the service 147

We are off to a good start! Now we need to implement the rest of the API as well.

6. Let's add the function to get the blog post count:

[HttpGet]

[Route("BlogPostCount")]

public async Task<int> GetBlogPostCountAsync()

{

 return await api.GetBlogPostCountAsync();

}

We use the Get verb but with another route.

7. We also need to be able to get one blog post. Add the following method:

[HttpGet]

[Route("BlogPosts/{id}")]

public async Task<BlogPost> GetBlogPostAsync(int id)

{

 return await api.GetBlogPostAsync(id);

}

In this case, we are using the Get verb but with another URL containing the id for
Post we want to get.

Next, we need an APIs that is protected, typically the one that updates or deletes
things.

8. Let's add an API that saves a blog post. Add the following code under the code
we just added:

[Authorize]

[HttpPut]

[Route("BlogPosts")]

public async Task<BlogPost> SaveBlogPostAsync([FromBody]
BlogPost item)

{

 return await api.SaveBlogPostAsync(item);

}

148 Creating an API

As I mentioned earlier in this chapter, we will only add one API for creating and
updating blog posts, and we will use the Put verb (replace) to do that. We have
added the Authorize attribute to the method, which will make sure that the user
needs to be authenticated to be able to call the method.

9. Next up, we add a method for deleting blog posts. To do this, add the
following code:

[Authorize]

[HttpDelete]

[Route("BlogPosts")]

public async Task DeleteBlogPostAsync([FromBody] BlogPost
item)

{

 await api.DeleteBlogPostAsync(item);

}

In this case, we use the Delete verb, and just as with saving we also add the
Authorize attribute.

10. Next, we need to do this for Categories and Tags as well. Let's start with
Categories. Add the following code to the MyBlogApiController class:

[HttpGet]

[Route("Categories")]

public async Task<List<Category>> GetCategoriesAsync()

{

 return await api.GetCategoriesAsync();

}

[HttpGet]

[Route("Categories/{id}")]

public async Task<Category> GetCategoryAsync(int id)

{

 return await api.GetCategoryAsync(id);

}

[Authorize]

[HttpPut]

[Route("Categories")]

public async Task<Category> SaveCategoryAsync([FromBody]
Category item)

Creating the service 149

{

 return await api.SaveCategoryAsync(item);

}

[Authorize]

[HttpDelete]

[Route("Categories")]

public async Task DeleteCategoryAsync([FromBody] Category
item)

{

 await api.DeleteCategoryAsync(item);

}

These are all the methods needed to handle Categories.

11. Next, let's do the same thing with Tags. Add the following code under the code we
just added:

[HttpGet]

[Route("Tags")]

public async Task<List<Tag>> GetTagsAsync()

{

 return await api.GetTagsAsync();

}

[HttpGet]

[Route("Tags/{id}")]

public async Task<Tag> GetTagAsync(int id)

{

 return await api.GetTagAsync(id);

}

[Authorize]

[HttpPut]

[Route("Tags")]

public async Task<Tag> SaveTagAsync([FromBody] Tag item)

{

 return await api.SaveTagAsync(item);

}

[Authorize]

[HttpDelete]

150 Creating an API

[Route("Tags")]

public async Task DeleteTagAsync([FromBody] Tag item)

{

 await api.DeleteTagAsync(item);

}

Great! We have an API! Now it's time to write the client that will access that API.

Creating the client
To access the API, we need to create a client. There are many ways of doing this, but
we will do it in the simplest way possible by writing the code ourselves.

The client will implement the same IMyBlogApi interface. This is so we have the
exact same code regardless of which implementation we are using, direct database access
with MyBlogApiServerSide or MyBlogApiClientSide, which we are going to
create next:

1. Right-click on the Dependencies node under MyBlog.Data and select Manage
NuGet Packages.

2. Search for Microsoft.AspNetCore.Components.WebAssembly.
Authentication and click Install.

3. Also, search for Newtonsoft.Json and Microsoft.Extensions.Http
and click Install.

4. We need some helper methods, so add a folder by right-clicking on MyBlog.Data,
then Add | Folder, and name the folder Extensions.

5. Right-click on the new folder and select Add | Class. Name the class
HttpClientExtensions.cs.

6. Add the following namespaces:
using Newtonsoft.Json;

using System.Net.Http;

using System.Threading;

7. Replace the class with the following code:
public static class HttpClientExtensions

{

 public static Task<HttpResponseMessage>
 DeleteAsJsonAsync<T>(this HttpClient httpClient,

Creating the client 151

 string requestUri, T data)

 => httpClient.SendAsync(new
 HttpRequestMessage(HttpMethod.Delete,
 requestUri) { Content = Serialize(data) });

 public static Task<HttpResponseMessage>
 DeleteAsJsonAsync<T>(this HttpClient httpClient,
 string requestUri, T data, CancellationToken
 cancellationToken)

 => httpClient.SendAsync(new
 HttpRequestMessage(HttpMethod.Delete,
 requestUri) { Content = Serialize(data) },
 cancellationToken);

 public static Task<HttpResponseMessage>
 DeleteAsJsonAsync<T>(this HttpClient httpClient,
 Uri requestUri, T data)

 => httpClient.SendAsync(new
 HttpRequestMessage(HttpMethod.Delete,
 requestUri) { Content = Serialize(data) });

 public static Task<HttpResponseMessage>
 DeleteAsJsonAsync<T>(this HttpClient
 httpClient, Uri requestUri, T data,
 CancellationToken cancellationToken)

 => httpClient.SendAsync(new
 HttpRequestMessage(HttpMethod.Delete,
 equestUri) { Content = Serialize(data) },
 cancellationToken);

 private static HttpContent Serialize(object data)
 => new StringContent
 (JsonConvert.SerializeObject(data), Encoding.UTF8,
 "application/json");

}

These are some extension methods that will help us call the API.

8. Right-click on the MyBlog.Data project and select Add | Class. Name the class
MyBlogApiClientSide.cs.

9. Open the newly created file.

10. Add IMyBlogApi to the class and make it public like this:

public class MyBlogApiClientSide:IMyBlogApi

{}

152 Creating an API

11. Some of the API calls are going to be public (do not require authentication), but
HttpClient will be configured to always require a token (we will do that later in
the chapter).

So, we are going to need one authenticated HttpClient and one not authenticated
HttpClient, depending on what API we are calling.

12. To be able to call the API, we need to inject HttpClient. Add the following code
to the class:

private readonly IHttpClientFactory factory;

public MyBlogApiClientSide(IHttpClientFactory factory)

{

 this.factory = factory;

}

13. We also need to add the following namespaces:

using MyBlog.Data.Interfaces;

using System.Net.Http;

using MyBlog.Data.Models;

using System.Net.Http.Json;

using Microsoft.AspNetCore.Components.WebAssembly.
Authentication;

using MyBlog.Data.Extensions;

using Newtonsoft.Json;

14. Now it's time to implement calls to the API. Let's begin with the Get calls for blog
posts. Add the following code:

public async Task<BlogPost> GetBlogPostAsync(int id)

{

 var httpclient = factory.CreateClient("Public");

 return await httpclient.GetFromJsonAsync<BlogPost>
 ($"MyBlogAPI/BlogPosts/{id}");

}

public async Task<int> GetBlogPostCountAsync()

{

 var httpclient = factory.CreateClient("Public");

 return await httpclient.GetFromJsonAsync<int>
 ("MyBlogAPI/BlogPostCount");

Creating the client 153

}

public async Task<List<BlogPost>> GetBlogPostsAsync(int
numberofposts, int startindex)

{

 var httpclient = factory.CreateClient("Public");

 return await
 httpclient.GetFromJsonAsync<List<BlogPost>>
 ($"MyBlogAPI/BlogPosts?numberofposts=
 {numberofposts}&startindex={startindex}");

}

We use the HttpClient we injected and then call GetFromJsonAsync, which
will automatically download the JSON and convert it to the class that we supply into
the generic method.

Now it gets a little trickier: we need to handle authentication Luckily, this is built
into HttpClient so we only need to handle AccessTokenNotAvailable
Exception. If a token is missing it will automatically try and renew it, but if there
is a problem (for example, the user is not logged in) we can redirect to the login
page.

We will come back to tokens and how authentication works in Chapter 8,
Authentication and Authorization.

15. Next, we add the API calls that need authentication, such as saving or deleting
a blog post.

Add the following code under the code we just added:
public async Task<BlogPost> SaveBlogPostAsync(BlogPost
item)

{

 try

 {

 var httpclient =
 factory.CreateClient("Authenticated");

 var response= await
 httpclient.PutAsJsonAsync<BlogPost>

 ("MyBlogAPI/BlogPosts",item);

 var json = await
 response.Content.ReadAsStringAsync();

 return

154 Creating an API

 JsonConvert.DeserializeObject<BlogPost>(json);

 }

 catch (AccessTokenNotAvailableException exception)

 {

 exception.Redirect();

 }

 return null;

}

public async Task DeleteBlogPostAsync(BlogPost item)

{

 try

 {

 var httpclient =
 factory.CreateClient("Authenticated");

 await httpclient.DeleteAsJsonAsync<BlogPost>
 ("MyBlogAPI/BlogPosts", item);

 }

 catch (AccessTokenNotAvailableException exception)

 {

 exception.Redirect();

 }

}

If the call throws AccessTokenNotAvailableException, that means
HttpClient couldn't get or renew a token automatically and the user needs to
log in.

This state should probably never happen because we will make sure that when the
user navigates to that page they will need to be logged in, but it's better to be safe
than sorry.

We also use an HttpClient named Authenticated, which we need to
configure, but we will come back to that in Chapter 8, Authentication and
Authorization.

16. Now we need to do the same for Categories. Add the following code to the
MyBlogApiClientSide class:

public async Task<List<Category>> GetCategoriesAsync()

{

Creating the client 155

 var httpclient = factory.CreateClient("Public");

 return await
 httpclient.GetFromJsonAsync<List<Category>>
 ($"MyBlogAPI/Categories");

}

public async Task<Category> GetCategoryAsync(int id)

{

 var httpclient = factory.CreateClient("Public");

 return await httpclient.GetFromJsonAsync<Category>
 ($"MyBlogAPI/Categories/{id}");

}

public async Task DeleteCategoryAsync(Category item)

{

 try

 {

 var httpclient =
 factory.CreateClient("Authenticated");

 await httpclient.DeleteAsJsonAsync<Category>
 ("MyBlogAPI/Categories", item);

 }

 catch (AccessTokenNotAvailableException exception)

 {

 exception.Redirect();

 }

}

public async Task<Category> SaveCategoryAsync(Category
item)

{

 try

 {

 var httpclient =
 factory.CreateClient("Authenticated");

 var response = await
 httpclient.PutAsJsonAsync<Category>
 ("MyBlogAPI/Categories", item);

 var json = await
 response.Content.ReadAsStringAsync();

 return

156 Creating an API

 JsonConvert.DeserializeObject<Category>(json);

 }

 catch (AccessTokenNotAvailableException exception)

 {

 exception.Redirect();

 }

 return null;

}

17. And next up, we will do the same for Tags. Add the following code just under the
code we just added:

public async Task<Tag> GetTagAsync(int id)

{

 var httpclient = factory.CreateClient("Public");

 return await httpclient.GetFromJsonAsync<Tag>
 ($"MyBlogAPI/Tags/{id}");

}

public async Task<List<Tag>> GetTagsAsync()

{

 var httpclient = factory.CreateClient("Public");

 return await
 httpclient.GetFromJsonAsync<List<Tag>>
 ($"MyBlogAPI/Tags");

}

public async Task DeleteTagAsync(Tag item)

{

 try

 {

 var httpclient =
 factory.CreateClient("Authenticated");

 await httpclient.DeleteAsJsonAsync<Tag>
 ("MyBlogAPI/Tags", item);

 }

 catch (AccessTokenNotAvailableException exception)

 {

 exception.Redirect();

 }

Summary 157

}

public async Task<Tag> SaveTagAsync(Tag item)

{

 try

 {

 var httpclient =
 factory.CreateClient("Authenticated");

 var response = await
 httpclient.PutAsJsonAsync<Tag>
 ("MyBlogAPI/Tags", item);

 var json = await
 response.Content.ReadAsStringAsync();

 return
 JsonConvert.DeserializeObject<Tag>(json);

 }

 catch (AccessTokenNotAvailableException exception)

 {

 exception.Redirect();

 }

 return null;

}

Great job! Our API client is now done!
Overall, the two steps are completed, only one left; as mentioned earlier in the chapter,
we won't cover the last part in this chapter. Instead, we will come back to it in Chapter 9,
Sharing Code and Resources.

Summary
In this chapter, we learned how to create an API and an API client, which is an important
part of most applications. This way, we can get blog posts from our database and show
them in our Blazor WebAssembly app.

In the next chapter, Chapter 8, Authentication and Authorization, we will add login
functionality to our sites.

In the chapter after that, Chapter 9, Sharing Code and Resources, we will finally get both
projects running on the same code, and that is where we will try out our API for the
first time.

8
Authentication and

Authorization
In this chapter, we will learn how to add authentication and authorization to our blog,
because we don't want just anyone to be able to create or edit blog posts.

Covering authentication and authorization fully would itself take a whole book, so we will
keep things simple here. The goal of this chapter is to get the built-in authentication and
authorization functionalities working, building on the already existing functionality that's
built in to ASP.NET. That means that there is not a lot of Blazor magic involved here; there
are a lot of resources that already exist that we can take advantage of.

Almost every system today has some way to log in, whether it is an admin interface (like
ours) or a member login portal. There are many different login providers, such as Google,
Twitter, and Microsoft. We can use all of these providers since we will just be building on
already existing architecture.

We will keep things simple and add our users to a database.

We will cover the following topics in this chapter:

• Implementing authentication

• Adding authorization

160 Authentication and Authorization

Technical requirements
Make sure you have followed the previous chapters, or use the Chapter07 folder as a
starting point.

You can find the source code for this chapter's end result at https://github.
com/PacktPublishing/Web-Development-with-Blazor/tree/master/
Chapter08.

Implementing authentication
There are a lot of built-in functionalities when it comes to authentication. The easiest
way to achieve authentication is to just select an authentication option when you create
a project, but we are here to learn how things work properly, so we will implement
authentication ourselves.

We need to implement authentication separately for the Blazor Server project and the
Blazor WebAssembly project because they work a bit differently.

But there are still things we can share between these two projects – first, let's add the
necessary tables to our database.

Adding tables to the database
To be able to add authentication, we need to add the necessary tables to our database. This
is something we can do using Entity Framework:

1. In the MyBlog.Data project, we need to add a couple of NuGet packages; right-
click on Dependencies and select Manage NuGet Packages.

2. Search for Microsoft.AspNetCore.Identity.EntityFrameworkCore
and click Install.

3. Search for Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore
and click Install.

4. We also need to add IdentityServer. Search for Microsoft.AspNetCore.
ApiAuthorization.IdentityServer and click Install.

If you only intend to use Blazor Server, you won't need this step, but since we want
our solution to work on both Blazor Server and Blazor WebAssembly, we will make
sure to add this IdentityServer now.

https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter08
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter08
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter08

Implementing authentication 161

5. Open the MyBlogDbContext.cs file. Change the code so that
MyBlogDbContext inherits from ApiAuthorizationDbContext
<AppUser> and add a new constructor and overridden OnModelCreating
as follows:

public class MyBlogDbContext :
ApiAuthorizationDbContext<AppUser>

 {

 public MyBlogDbContext(DbContextOptions
 options) : base(options, new
 OperationalStoreOptionsMigrations())

 { }

protected override void OnModelCreating(ModelBuilder
builder)

 {

 base.OnModelCreating(builder);

 }

By adding this code, we are including the tables from the inherited classes as well.

6. In the MyBlogDbContext.cs file, we have a class called
MyBlogDbContextFactory. Change the path to the database to ../MyBlog.
db as follows:

optionsBuilder.UseSqlite("Data Source = ../MyBlog.db");

This way, when we update the database, we will update it for all our projects (all our
projects are using the same database file).

7. Also, add this class (use the same file since the projects are tightly coupled):

public class OperationalStoreOptionsMigrations :
IOptions<OperationalStoreOptions>

{

 public OperationalStoreOptions Value => new
 OperationalStoreOptions()

 {

 DeviceFlowCodes = new
 TableConfiguration("DeviceCodes"),

 EnableTokenCleanup = false,

162 Authentication and Authorization

 PersistedGrants = new
 TableConfiguration("PersistedGrants"),

 TokenCleanupBatchSize = 100,

 TokenCleanupInterval = 3600,

 };

}

We use this class to configure IdentityServer, and we need this class because
we are using the same data context for both the identity part (the usernames,
passwords, and tokens) and our data (blog posts, tags, and categories).

To be able to create DbContextFactory, we need to have a constructor with only
one parameter.

We could have created multiple database contexts, one for our data and one for the
identity information, but what we've done will prove to be an easier solution as we
move forward.

Add the following using statements:
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;

using IdentityServer4.EntityFramework.Options;

using Microsoft.AspNetCore.ApiAuthorization.
IdentityServer;

using Microsoft.Extensions.Options;

8. Right-click on the models folder and select Add | Class. Name the class
AppUser.cs.

9. Open the AppUser class and replace the content with the following:

using Microsoft.AspNetCore.Identity;

namespace MyBlog.Data.Models

{

 public class AppUser : IdentityUser

 {}

}

Now we need to create a migration, and just as we did before in Chapter 3,
Introducing Entity Framework Core; we will do that using PowerShell.

Implementing authentication 163

10. Open PowerShell and navigate to the folder that you have the MyBlog.Data
project in.

This can also be done from within Developer PowerShell in Visual Studio.

11. Execute the following commands:

dotnet ef migrations add Identity

dotnet ef database update

Just as a reminder, we are running the dotnet tool to create a migration with the
name Identity.

We also update the database so that it gets all the latest migrations, and we are ready
to start using the new data context.

Next, we need to configure the Blazor Server project.

Configuring the Blazor Server project
We need to tell the Blazor Server project that we want it to use authentication. We do that
by adding configurations in Startup.cs:

1. In the MyBlogServerSide project, right-click on the Dependencies node and
select Manage NuGet Packages.

2. Search for Microsoft.AspNetCore.Identity.UI and click Install.

This package contains a UI and extensions that will help us when it comes to
user login.

ASP.NET has support for a lot of different ways of authenticating, and so leveraging
what already exists in terms of its authentication infrastructure makes a lot of sense.

3. Right-click on the MyBlogServerSide project, select Add Folder, and name the
folder Authentication.

4. Right-click on the folder and select Add | Class, and name the class
RevalidatingIdentityAuthenticationStateProvider.cs.

5. We don't need to talk about the content of this class since this is normally
provided in a Blazor template. Simply copy the content from the GitHub
repository found here: https://github.com/PacktPublishing/
Web-Development-with-Blazor/blob/master/
Chapter08/MyBlog/MyBlogServerSide/Authentication/
RevalidatingIdentityAuthenticationStateProvider.cs.

https://github.com/PacktPublishing/Web-Development-with-Blazor/blob/master/Chapter08/MyBlog/MyBlogServerSide/Authentication/RevalidatingIdentityAuthenticationStateProvider.cs
https://github.com/PacktPublishing/Web-Development-with-Blazor/blob/master/Chapter08/MyBlog/MyBlogServerSide/Authentication/RevalidatingIdentityAuthenticationStateProvider.cs
https://github.com/PacktPublishing/Web-Development-with-Blazor/blob/master/Chapter08/MyBlog/MyBlogServerSide/Authentication/RevalidatingIdentityAuthenticationStateProvider.cs
https://github.com/PacktPublishing/Web-Development-with-Blazor/blob/master/Chapter08/MyBlog/MyBlogServerSide/Authentication/RevalidatingIdentityAuthenticationStateProvider.cs

164 Authentication and Authorization

This is one of the files that Microsoft will supply for us when we choose to add
authentication when we create our project.

It will check whether the user credentials are still valid (after 30 minutes by default).

6. Open Startup.cs and add the following namespaces:

using MyBlog.Data.Models;

using Microsoft.AspNetCore.Components.Authorization;

using MyBlogServerSide.Authentication;

7. To not have to repeat ourselves, let's add the connection string as a setting instead.

Open appsetting.json and add the following just after the first curly brace:
 "ConnectionStrings": {

 "MyBlogDB": "Data Source=../MyBlog.db"

},

8. Add this code at the bottom of the ConfigureServices method:

services.AddDbContext<MyBlogDbContext>(opt => opt.
UseSqlite(Configuration.GetConnectionString("MyBlogDB")));

services.AddDefaultIdentity<AppUser>(options => options.
SignIn.RequireConfirmedAccount = true)

 .AddEntityFrameworkStores<MyBlogDbContext>();

services.AddScoped<AuthenticationStateProvider,
RevalidatingIdentityAuthenticationStateProvider
<AppUser>>();

We configured the built-in identity provider so Blazor knows where to find the
users and passwords.

We also need to add a configuration for DbContext. We will be using
DbContextFactory for the rest of our application, but the Identity
functionality needs DbContext, so we add a duplicate for the Identity
functionality to work.

Make sure to change the connection string on DBContextFactory a few lines
above the code we just added.

9. In the Configure method just beneath app.UseRouting(), add the
following code:

app.UseAuthentication();

app.UseAuthorization();

Implementing authentication 165

10. Open the App.Razor file and replace the content with the following:

<CascadingAuthenticationState>

 <Router AppAssembly="@typeof(Program).Assembly"

 PreferExactMatches="@true">

 <Found Context="routeData">

 <AuthorizeRouteView RouteData="@routeData"

 DefaultLayout="@typeof(MainLayout)">

 <NotAuthorized>

 <p>Not authorized</p>

 </NotAuthorized>

 <Authorizing>

 <p>Checking</p>

 </Authorizing>

 </AuthorizeRouteView>

 </Found>

 <NotFound>

 <LayoutView Layout="@typeof(MainLayout)">

 <p>Sorry, there's nothing at this
 address.</p>

 </LayoutView>

 </NotFound>

 </Router>

</CascadingAuthenticationState>

We added CascadingAuthenticationState, which will make sure that all
the components have access to AuthenticationState (whether or not we are
logged in).

We also added AuthorizeRouteView, which will check whether the page is
authenticated or not.

If the user is not authenticated, we can show another message using the
NotAuthorized template and another message while we check the authorization.

11. Right-click on the components folder and select Add | Razor component. Name
the component LoginDisplay.razor.

166 Authentication and Authorization

12. Open the new component and replace the content with the following:

<AuthorizeView>

 <Authorized>

 Hello,
 @context.User.Identity.Name!

 <form method="post" action="/LogOut">

 <button type="submit" class="nav-link
 btn btn-link">Log out</button>

 </form>

 </Authorized>

 <NotAuthorized>

 Register

 Log in

 </NotAuthorized>

</AuthorizeView>

In this file, we use the built-in AuthorizeView component, which will make it
possible to specify different views depending on whether or not the user is logged in.

If they are logged in, we want to show a log-out link, and if they are not logged in,
we want to show a log-in or register link.

13. Open _Imports.razor and add the following using statement anywhere in
the file:

@using MyBlogServerSide.Components

14. Open Shared/MainLayout.razor and add the component to the page just
after the About link:

<LoginDisplay />

15. The identity UI needs a file called _LoginPartial.cshtml to work. Right-click
on the Pages folder and select Add | Folder; name the folder Shared.

16. Right-click on the Pages/Shared folder and click Add | New item.

17. Click Razor Page – Empty and name the file _LoginPartial.cshtml.

Implementing authentication 167

18. Replace the content of the file with the following:

@using Microsoft.AspNetCore.Identity;

@using MyBlog.Data.Models;

@inject SignInManager<AppUser> SignInManager

@inject UserManager<AppUser> UserManager

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<ul class="navbar-nav">

@if (SignInManager.IsSignedIn(User))

{

 <li class="nav-item">

 <a class="nav-link text-dark"
 asp-area="Identity"
 asp-page="/Account/Manage/Index"
 title="Manage">
 Hello @User.Identity.Name!

 <li class="nav-item">

 <form class="form-inline" asp-area="Identity"
 asp-page="/Account/Logout"
 asp-route-returnUrl="/" method="post">
 <button type="submit" class="nav-link
 btn btn-link text-dark">Logout</button>
 </form>

}

else

{

 <li class="nav-item">

 <a class="nav-link text-dark"
 asp-area="Identity"
 asp-page="/Account/Register">Register

 <li class="nav-item">

168 Authentication and Authorization

 <a class="nav-link text-dark"
 asp-area="Identity"
 asp-page="/Account/Login">Login

}

The reason we have a file like that is that the login page comes from the
Microsoft.AspNetCore.Identity.UI package, which supplies us with
the functionality of logging in with Facebook, Google, Microsoft, Twitter, and
other accounts.

We get all that functionality for free. We can customize the login page as well by
scaffolding the views, but we won't go into that in this book.

More information on scaffolding can be found here: https://docs.
microsoft.com/en-us/aspnet/core/security/authentication/
scaffold-identity?view=aspnetcore-5.0&tabs=visual-studio.

19. Right-click on the Pages folder and select Add | New item.

20. Click Razor Page – Empty and name the file Logout.cshtml.

21. Replace the content of the file with the following:

@page

@using Microsoft.AspNetCore.Identity

@using MyBlog.Data.Models

@attribute [IgnoreAntiforgeryToken]

@inject SignInManager<AppUser> SignInManager

@functions {

 public async Task<IActionResult> OnPost()

 {

 if (SignInManager.IsSignedIn(User))

 {

 await SignInManager.SignOutAsync();

 }

 return Redirect("~/");

 }

}

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/scaffold-identity?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/scaffold-identity?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/scaffold-identity?view=aspnetcore-5.0&tabs=visual-studio

Implementing authentication 169

22. Now we need something to secure. We need to edit the following four files and add
the @attribute [Authorize] attribute to each file:

Pages/Admin/BlogPostEdit.razor

Pages/Admin/BlogPostList.razor

Pages/Admin/CategoryList.razor

Pages/Admin/TagList.razor

23. Change the startup project to MyBlogServerSide and run the project by
pressing F5.

24. If you now navigate to https://localhost:5001/admin/Tags (the port
number may differ), you will notice that you get a Not authorized message, as
shown in Figure 8.1:

Figure 8.1 – Not authorized view

25. Click Register and log in with your credentials, and you will now have access to the
TagList component.

Congratulations, you now have a site with login functionality running on the server side.
Now we need to implement the same thing for Blazor WebAssembly.

170 Authentication and Authorization

Configuring the Blazor WebAssembly project
The WebAssembly project has some of the same functionalities; it is a tiny bit more
complicated because it requires API authentication as well.

By default (if we choose to add authentication when we create the project), it will use
IdentityServer to authenticate both the client and the API, which is what we are
going to use as well.

IdentityServer is an open source project that will help us handle authentication for
our site as well as our API.

Since we implemented IdentityServer in our MyBlog.Data project, we already
have most of what we need in place.

Let's implement the rest.

First, we make some changes to the MyBlogWebAssembly.Server project.

Updating MyBlogWebAssembly.Server
Execute the following steps to update the MyBlogWebAssembly.Server project:

1. In the MyBlogWebAssembly.Server project, open Startup.cs.

2. Add the following namespaces:

using MyBlog.Data.Models;

using Microsoft.AspNetCore.Authentication;

3. Open appsetting.json and add the following just after the first curly brace:

 "ConnectionStrings": {
 "MyBlogDB": "Data Source=../../MyBlog.db" },

4. In the ConfigureServices method, add the following at the bottom of the
method (this needs to be after AddDbContextFactory):

services.AddDbContext<MyBlogDbContext>(opt => opt.
UseSqlite(Configuration.GetConnectionString("MyBlogDB")));

services.AddDefaultIdentity<AppUser>(options => options.
SignIn.RequireConfirmedAccount = false)

 .AddEntityFrameworkStores<MyBlogDbContext>();

services.AddIdentityServer()

Implementing authentication 171

 .AddApiAuthorization<AppUser, MyBlogDbContext>();

services.AddAuthentication()

 .AddIdentityServerJwt();

We configure the database, pretty much the same thing we did for the Blazor Server
project earlier in the chapter.

We also configure the Identity provider as well as IdentityServer.

We also added a JWT to the configuration. JWT stands for JSON Web Token,
which is an internet standard for creating data with an optional signature/
encryption that holds JSON and can hold several claims.

The token is stored in the session storage in the browser. There are two tokens: one
showing that we are logged in and one that we use for API access (this is handled by
the framework for us).

This is what our API client (which we created at the beginning of this chapter) will
send to the API to authenticate.

This will happen automatically for us.

5. In the Configure method, just above app.UseEndpoints, add the
following code:

app.UseIdentityServer();

app.UseAuthentication();

app.UseAuthorization();

These lines need to be between app.UseRouting(); and app.UseEndpoints,
otherwise you will get a warning that things might not work as you expect.

6. Now we need _LoginPartial, just as we did for the Blazor Server project. Right-
click on the Pages folder and select Add | Folder; name the folder Shared.

7. Right-click on Pages/Shared and click Add | Razor page; name the page _
LoginPartial.cshtml.

8. Add the following code to the file we just created:

@using Microsoft.AspNetCore.Identity

@using MyBlog.Data.Models

@inject SignInManager<AppUser> SignInManager

@inject UserManager<AppUser> UserManager

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

172 Authentication and Authorization

@{

 var returnUrl = "/";

 if (Context.Request.Query.TryGetValue("returnUrl",
 out var existingUrl)) {
 returnUrl = existingUrl;
 }

}

<ul class="navbar-nav">

9. Inside of the tag, add the following code:

@if (SignInManager.IsSignedIn(User))

{

 <li class="nav-item">

 <a class="nav-link text-dark"
 asp-area="Identity"
 asp-page="/Account/Manage/Index"
 title="Manage">
 Hello @User.Identity.Name!

 <li class="nav-item">

 <form class="form-inline" asp-area="Identity"
 asp-page="/Account/Logout"
 asp-route-returnUrl="/" method="post">
 <button type="submit" class="nav-link btn
 btn-link text-dark">Logout</button>

 </form>

}

else

{

 <li class="nav-item">

 <a class="nav-link text-dark"
 asp-area="Identity"
 asp-page="/Account/Register"
 asp-route-returnUrl="@returnUrl">Register

Implementing authentication 173

 <li class="nav-item">

 <a class="nav-link text-dark"
 asp-area="Identity"
 asp-page="/Account/Login"
 asp-route-returnUrl="@returnUrl">Login

}

Based on the user's current status, we show whether the user is logged in. If the user
is logged in, we show a greeting and a Log out link.

10. We also need to create a controller for Open ID Connect.

Right-click on the Controllers folder and select Add | Class; name the class
OidcConfigurationController.cs.

11. Open the file we just created and replace the content with the following:

using Microsoft.AspNetCore.ApiAuthorization.
IdentityServer;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Extensions.Logging;

namespace MyBlogWebAssembly.Server.Controllers

{

 public class OidcConfigurationController : Controller

 {

 private readonly
 ILogger<OidcConfigurationController> _logger;

 public OidcConfigurationController
 (IclientRequestParametersProvider
 clientRequestParametersProvider,
 ILogger<OidcConfigurationController>
 logger)

 {

174 Authentication and Authorization

 ClientRequestParametersProvider =
 clientRequestParametersProvider;

 _logger = logger;

 }

 public IclientRequestParametersProvider
 ClientRequestParametersProvider { get; }

 [HttpGet("_configuration/{clientId}")]

 public IactionResult
 GetClientRequestParameters([FromRoute] string
 clientId)

 {

 var parameters =
 ClientRequestParametersProvider.
 GetClientParameters(HttpContext, clientId);

 return Ok(parameters);

 }

 }

}

This controller is responsible for sending the token to the client when the client
requests it.

12. Open appsettings.json and add the following just above the last curly brace:

,

"IdentityServer": {

 "Clients": {

 "MyBlogWebAssembly.Client": {

 "Profile": "IdentityServerSPA"

 }

 }

}

This is the name of our client and needs to be specified; you must use the same
client name in the API.

Implementing authentication 175

13. Open appsettings.Development.json and add the following:

,

"IdentityServer": {

 "Key": {

 "Type": "Development"

 }

}

The last two steps are to configure IdentityServer. We created a client called
MyBlogWebAssembly.Client with the IdentityServerSPA profile. We
also used a key type of Development, which created a fake certificate that we
can use during development (but we need to replace it with a real certificate when
deploying to a production server).

The server part is now done; now we need to make changes to the
MyBlogWebAssembly.Client project.

Updating MyBlogWebAssembly.Client
Now we need to tell the client project that we want to tell the project to use authentication:

1. First, we need to add a couple of NuGet packages. Right-click on the
MyBlogWebAssembly.Client project and click Manage NuGet Packages.

2. Search for Microsoft.AspNetCore.Components.WebAssembly.
Authentication and click Install.

3. Search for Microsoft.Extensions.Http and click Install.

4. Open Program.cs and replace the line builder.Services.AddScoped(sp
=> new HttpClient { BaseAddress = new Uri(builder.
HostEnvironment.BaseAddress) }); with the following code block:

builder.Services.AddHttpClient("Authenticated", client
=> client.BaseAddress = new Uri(builder.HostEnvironment.
BaseAddress))

 .AddHttpMessageHandler<BaseAddressAuthorizationMessage
 Handler>();

builder.Services.AddHttpClient("Public", client =>
client.BaseAddress = new Uri(builder.HostEnvironment.
BaseAddress));

builder.Services.AddApiAuthorization();

176 Authentication and Authorization

We add two HttpClient dependency injections, one for calling authenticated
APIs and one for calling any non-authenticated APIs.

The one for calling authenticated APIs will throw an exception if we call an API
without a token (without being logged in); that's why we need to have a specific one
for calling the APIs that do not require us to be logged in.

5. Add the following using statement:

using Microsoft.AspNetCore.Components.WebAssembly.
Authentication;

6. Now we need to add a couple of files. Right-click on the Pages folder, select
Add | Razor component, and name the file Authentication.razor.

7. Replace the content of the file with the following:

@page "/authentication/{action}"

@using Microsoft.AspNetCore.Components.WebAssembly.
Authentication

<RemoteAuthenticatorView Action="@Action" />

@code{

 [Parameter] public string Action { get; set; }

}

The component will redirect and log in on the server.

This is where a lot of magic happens: based on the action, it will redirect you to the
server and the built-in authentication UI.

RemoteAuthenticatorView has a lot of different templates that you can use
to customize the component, such as LogInFailed, CompletingLogOut,
and LoggingIn.

We use the server for authentication and the client will get a token back so that we
know we are logged in and that we can get data from our APIs.

8. Right-click on the Shared folder, select Add | Razor component, and name the file
LoginDisplay.razor.

9. Replace the content of the file with the following:

@using Microsoft.AspNetCore.Components.Authorization

@using Microsoft.AspNetCore.Components.WebAssembly.
Authentication

Implementing authentication 177

@inject NavigationManager Navigation

@inject SignOutSessionStateManager SignOutManager

<AuthorizeView>

 <Authorized>

 Hello,
 @context.User.Identity.Name!

 <button class="nav-link btn btn-link"
 @onclick="BeginSignOut">Log out</button>

 </Authorized>

 <NotAuthorized>

 Register

 Log in

 </NotAuthorized>

</AuthorizeView>

@code{

 private async Task BeginSignOut(MouseEventArgs args)

 {

 await SignOutManager.SetSignOutState();

 Navigation.NavigateTo("authentication/logout");

 }

}

This file differs a bit from the file we created for Blazor Server. It uses the
authentication component we just created and makes calls back to the server.

It will log out the client and the server.

10. Right-click on the Shared folder, select Add | Razor component, and name the file
RedirectToLogin.razor.

11. Replace the content of the file with the following:

@inject NavigationManager Navigation

@using Microsoft.AspNetCore.Components.WebAssembly.
Authentication

@code {

 protected override void OnInitialized()

 {

178 Authentication and Authorization

 Navigation.NavigateTo($"authentication/
 login?returnUrl={Uri.EscapeDataString
 (Navigation.Uri)}");

 }

}

The component will redirect to the login page, again using the authentication
component.

12. Open _Imports.razor and add this:

@using Microsoft.AspNetCore.Components.Authorization

@using Microsoft.AspNetCore.Components.WebAssembly.
Authentication

13. Now we need to activate authentication by opening App.Razor and replacing the
content with the following code:

<CascadingAuthenticationState>

 <Router AppAssembly="@typeof(Program).Assembly"

 PreferExactMatches="@true">

 <Found Context="routeData">

 <AuthorizeRouteView RouteData="@routeData"

 DefaultLayout="@typeof(MainLayout)">

 <NotAuthorized>

 @if (!context.User.Identity.
 IsAuthenticated)

 {

 <RedirectToLogin />

 }

 else

 {

 <p>You are not authorized to
 access this resource.</p>

 }

 </NotAuthorized>

 </AuthorizeRouteView>

 </Found>

 <NotFound>

 <LayoutView Layout="@typeof(MainLayout)">

Implementing authentication 179

 <p>Sorry, there's nothing at this
 address.</p>

 </LayoutView>

 </NotFound>

 </Router>

</CascadingAuthenticationState>

14. Now we need to add a reference to the JavaScript file. Open wwwroot/index.html
and just above the reference to blazor.webassembly.js, add the following:

<script src="_content/Microsoft.AspNetCore.Components.
WebAssembly.Authentication/AuthenticationService.js"></
script>

Now everything is in place, but we need something to call the API as well.

15. Open Pages/FetchData.razor and inject IhttpClientFactory after the
@page directive:

@inject IHttpClientFactory factory

16. Change the content of the OnInitializedAsync method to this:

try

{

 var httpclient =
 factory.CreateClient("Authenticated");

 forecasts = await
 httpclient.GetFromJsonAsync
 <WeatherForecast[]>("WeatherForecast");

}

catch (AccessTokenNotAvailableException exception)

{

 exception.Redirect();

}

This will call the weather forecast service, and if the token is missing, it will redirect
to the login page.

180 Authentication and Authorization

17. Add the following namespace:

@using Microsoft.AspNetCore.Components.WebAssembly.
Authentication

18. Now it's time to run the project. Make sure to set MyBlogWebAssembly.Server
as a startup project and press F5.

19. Now navigate to the weather forecast service and you will be redirected to the login/
registration page, where you can create an account or log in.

Great, now everything is in place for logging in to our site. Sometimes, we want to grant
different users different rights, which is what the next section is all about.

Adding authorization
At this point, we know whether the user is authenticated or not, but does the user have
access to a specific function? That is what authorization is all about. Luckily, the built-in
functions support this as well, even though we have to write some code for it.

The server side has all the tables needed to add roles to our users. There are, however, no
UIs available. For our application, we'll just add a role manually in the database, but first,
we need to configure roles.

Adding roles from the server
Execute the following steps to add roles from the server:

1. In the MyBlogWebAssembly.Server project, open the Startup.cs file.

2. In the ConfigureServices method, add options to .AddApiAuthorization
and remove the default claim mapping as follows:

.AddApiAuthorization<AppUser, MyBlogDbContext>(options =>

{

 options.IdentityResources["openid"].UserClaims.
 Add("name");

 options.ApiResources.Single().UserClaims.Add("name");

 options.IdentityResources["openid"].UserClaims.
 Add("role"); options.ApiResources.Single().
 UserClaims.Add("role");

});

Adding authorization 181

 JwtSecurityTokenHandler.DefaultInboundClaimFilter.
 Remove("role");

This will include roles in the token so that we can use the token on the client.

3. Add roles to Services.AddDefaultIdentity so it now looks like this:

services.AddDefaultIdentity<AppUser>(options =>
 options.SignIn.RequireConfirmedAccount = false)

 .AddRoles<IdentityRole>()
 .AddEntityFrameworkStores<MyBlogDbContext>();

4. Add the namespace:

using Microsoft.AspNetCore.Identity;

using System.IdentityModel.Tokens.Jwt;

The server will now send the roles over to the client, but the client won't be listening; so,
next up, we need to make changes to the client.

Adding roles to the client
For the client to pick up the roles, we need to parse them from the access token. Don't
worry, it's not as complicated as it sounds:

1. Right-click in the MyBlogWebAssembly.Client project, then click Add | New
folder; name the folder Authentication.

2. Right-click on the Authentication folder and select Add | Class, then name the
class RoleAccountClaimsPrincipalFactory.cs.

3. Replace the content of the file with the code from GitHub here: https://
github.com/PacktPublishing/Web-Development-with-Blazor/
blob/master/Chapter08/MyBlog/MyBlogWebAssembly/Client/
Authentication/RoleAccountClaimsPrincipalFactory.cs.

What we are doing here is we are making sure that we get the JSON node where
the roles can be found. Depending on how many nodes are returned, there can be
a string or an array of strings. We check whether it is an array and if it is, we add
every item to the user; if it is a string, we add just that single item to the user.

https://github.com/PacktPublishing/Web-Development-with-Blazor/blob/master/Chapter08/MyBlog/MyBlogWebAssembly/Client/Authentication/RoleAccountClaimsPrincipalFactory.cs
https://github.com/PacktPublishing/Web-Development-with-Blazor/blob/master/Chapter08/MyBlog/MyBlogWebAssembly/Client/Authentication/RoleAccountClaimsPrincipalFactory.cs
https://github.com/PacktPublishing/Web-Development-with-Blazor/blob/master/Chapter08/MyBlog/MyBlogWebAssembly/Client/Authentication/RoleAccountClaimsPrincipalFactory.cs
https://github.com/PacktPublishing/Web-Development-with-Blazor/blob/master/Chapter08/MyBlog/MyBlogWebAssembly/Client/Authentication/RoleAccountClaimsPrincipalFactory.cs

182 Authentication and Authorization

4. Now we need to add that to the dependency injection pipeline. Open program.cs
and replace builder.Services.AddApiAuthorization(); with the
following:

builder.Services.AddApiAuthorization()
.AddAccountClaimsPrincipalFactory<RoleAccountClaims
PrincipalFactory>();

5. Add the following namespace:

using MyBlogWebAssembly.Client.Authentication;

Now that everything is in place for using roles, next we need to add a role to our database.

Adding a role to the database
To add data to our database, we can use a tool called DB Browser for SQLite:

1. Download DB Browser for SQLite from https://sqlitebrowser.org/ (if
you have some other application you'd rather use, feel free to use that instead).

2. Open MyBlog.db in DB Browser; there should be 15 tables there.

3. Click the Browse data tab and select the AspNetRoles table.

4. Now create a role – let's call it Administrator. Click on the Insert new row into
the current table button (a document with a small +) and use the following values:

Id: Leave empty

Name: Administrator

NormalizedName: administrator

ConcurencyStamp: Leave empty

5. Change table to AspNetUsers and copy the ID of your user (a GUID).

6. Change table to AspNetUserRoles and click on the Insert new row into the
current table button (a document with a small +), then paste in the ID of the user
and the ID of the role.

Great! Now our user is an administrator. Let's test it real quick:

1. In the MyBlogWebAssembly.Client project, open Pages/Index.razor and
add the following to the bottom of the component:

<AuthorizeView Roles="Administrator">

https://sqlitebrowser.org/

Summary 183

 <Authorized>

 You are an admin!

 </Authorized>

 <NotAuthorized>

 Not logged in or not administrator

 </NotAuthorized>

</AuthorizeView>

2. Open _Imports.razor and add this as a namespace:

@using MyBlogWebAssembly.Client.Pages

3. Open Shared/MainLayout.razor and add the component to the page just
after the About link:

<LoginDisplay />

4. Set MyblogWebAssembly.Server as a startup project.

5. Now run the project (Ctrl + F5) and you will see the message Not logged in or not
administrator, and when you log in, it will change to You are an admin!.

Awesome! We have authentication and authorization working!

Summary
In this chapter, we learned how to add authentication to our existing site. It is easier to add
authentication at the point of creating a project, but now we have a better understanding
of what is going on under the hood.

In the next chapter, we will share the components between our Blazor Server project and
our Blazor WebAssembly project, making both projects look the same (and look great) as
well as calling our web API for the first time.

9
Sharing Code

and Resources
In this chapter, it's time to bring the projects together. It is possible to share code between
Blazor Server and Blazor WebAssembly. This is also how we would create reusable
components and share them in the community or just in the workplace.

Using this approach, it is no longer important to choose Server or WebAssembly. This way,
you can use Blazor Server while you are porting your existing site and when you are done,
just move the shared library to a new hosting model.

We will also add static content such as CSS.

In this chapter, we will cover the following topics:

• Cleaning up the project

• Setting up the API

• Moving the components

• Adding static files

• CSS isolation

186 Sharing Code and Resources

Technical requirements
Make sure you have followed the previous chapters or use the Chapter08 folder as a
starting point.

You can find the source code for this chapter's end result at https://github.
com/PacktPublishing/Web-Development-with-Blazor/tree/master/
Chapter09.

Note
If you are jumping into this chapter using the code from GitHub, make sure to
register the user with an email and follow the instructions for adding a user and
adding the Administrator role to the database. You can find the instructions in
Chapter 8, Authentication and Authorization.

Cleaning up the project
Throughout the book, we have generated a bunch of files, and if we used the repository at
any point, we probably have a bunch more files. So, the first thing we need to do is to clean
up the project a bit.

In the MyBlogServerSide project, delete the following files (if you don't have a
particular file in the following list, don't worry, just go to the next one):

• Pages/Alert – folder

• Pages/Events – folder

• Form-folder

• Pages/ComponentWithCascadingParameter.razor

• Pages/ComponentWithCascadingValue.razor

• Pages/CounterWithoutRazor.cs

• Pages/CounterWithParameter.razor

• Pages/DBTest.razor

• Pages/FetchDataWithCodeBehind.razor

• Pages/FetchDataWithInherits.razor

• Pages/Parameters.razor

• Pages/ParentCounter.razor

• Pages/SetFocus.razor

https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter09
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter09
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter09

Setting up the API 187

Great! We now have a project that is a bit cleaner. The next step is to set up the Blazor
WebAssembly project and make it use our new API.

Setting up the API
It is only Blazor WebAssembly that needs access to the Web API since it does not have
direct database access. The most common architecture is probably to use a Web API for
Blazor Server as well.

Let's hook up our MyBlog.WebAssembly project to our API and here is where
dependency injection shines.

In our Blazor Server project, we have the services.AddScoped<IMyBlogApi,
MyBlogApiServerSide>(); configuration telling our app that when we
ask for an instance of IMyBlogApi, Blazor should return an instance of the
MyBlogApiServerSide class, which is a version of the API that has direct access to
the database.

Our shared components only know the interface, and the instance that should be returned
is configured per project.

In the Blazor WebAssembly project, we will instead return an instance of the Web API
client we created in Chapter 7, Creating an API.

However, it doesn't make sense that the Blazor WebAssembly project references a library
that has direct database access (like MyBlog.Data has). We would get an error message
were we to try.

So, we need to move the files we can share into another library. Perform the following steps:

1. Right-click on the MyBlog solution and select Add | New Project.

2. Search for Class Library (.NET Core) and then click Next.

3. Name the project MyBlog.Data.Shared and keep the location as is and then
click Create.

4. Select target framework .NET 5.0 (Current) and then click Create.

5. Right-click on the Dependencies node under the MyBlogWebAssembly.Client
project.

Click Add project reference, check the MyBlog.Data.Shared and MyBlog.Shared
checkboxes, and then click OK.

188 Sharing Code and Resources

6. Move the following files from the MyBlog.Data project to MyBlog.Data.
Shared:

Extension – folder

Interfaces – folder

Models/BlogPost.cs

Models/Category.cs

Models/Tag.cs

MyBlogApiClientSide.cs

These are the files that are the same regardless of the hosting model.

7. We need to add some NuGet Packages to get things working. Right-click in the
Dependencies node under the MyBlog.Data.Shared project and select Manage
NuGet Packages.

8. Search for Newtonsoft.Json and then click Install.

9. Search for Microsoft.AspNetCore.Components.WebAssembly.
Authentication and then click Install.

10. Search for Microsoft.Extensions.Http and then click Install.

11. Now we need to reference the new project. Right-click on the Dependencies node
under the MyBlog.Data project and click Add project reference.

12. Check MyBlog.Data.Shared and then click OK.

13. Right-click on the Dependencies node under the MyBlog.Shared project and
then click Add project reference.

14. Check MyBlog.Data.Shared and then click OK.

Now we have moved the classes that are shareable to a new library. The next step is to
move the files that we want to share between the projects.

Moving the components
We are going to move the components that we can share between the Blazor Server and
Blazor WebAssembly projects. This is one of the amazing powers of Blazor; the only thing
that differs between the two projects is the hosting model. The code can remain the same
(for most cases).

In our case, we made sure to have different ways of accessing the data just to cover those
possibilities as well, but we will come back to that in the next section.

Moving the components 189

First, we need to create a new project and move some files. To do this, perform the
following steps:

1. Right-click on the MyBlog solution and select Add | New project.

2. Search for Razor and you should find a template called Razor Class Library. Select
that template and click Next.

3. Name the project MyBlog.Shared, leave the location as is (it should be in the
correct folder already), and then click Next.

4. Select Target Framework .NET 5.0 (Current) and make sure Support pages and
views are unchecked. Then, click Create.

5. Add a reference to the MyBlog.Data.Shared project by right-clicking the
Dependencies node under the MyBlog.Shared project and selecting Add
project reference.

Check the MyBlog.Data.Shared checkbox and then click OK.

6. Add a NuGet package by right-clicking Dependencies under the MyBlog.Shared
node and selecting Manage NuGet Packages.

7. Search for Markdig and then click Install.

8. Tick the Include pre-release box (at the time of writing, NuGet is only available as
pre-release).

Search for Microsoft.AspNetCore.Components.Web.Extensions and
then click Install.

Untick the Include pre-release box.

9. Search for Microsoft.AspNetCore.Components.WebAssembly.
Authentication and then click Install.

10. Now we need to add some namespaces. Open the _Imports.razor file and
replace the content with the following:

@using System.Net.Http

@using Microsoft.AspNetCore.Authorization

@using Microsoft.AspNetCore.Components.Authorization

@using Microsoft.AspNetCore.Components.Forms

@using Microsoft.AspNetCore.Components.Routing

@using Microsoft.AspNetCore.Components.Web

@using Microsoft.AspNetCore.Components.Web.Virtualization

@using Microsoft.JSInterop

190 Sharing Code and Resources

@using MyBlog.Shared

@using MyBlog.Shared.Components

@using MyBlog.Data.Models;

@using MyBlog.Data.Interfaces;

@using Microsoft.AspNetCore.Components.Web.Extensions.
Head

11. Right-click on the MyBlog.Shared project and then select Add | New Folder.
Name the folder Components.

12. Now, move all the files except LoginDisplay.razor from the Components
folder in the MyBlogServerSide project to the Components folder in the
MyBlog.Shared project.

The Login display differs a bit depending on the hosting platform, so we don't want
to share that one.

13. Right-click on the MyBlog.Shared project and then select Add | New Folder.
Name the folder Pages.

14. Move the Admin folder from the Pages folder in the MyBlogServerSide
project to the Pages folder in the MyBlog.Shared project.

15. Move the Index.razor and Post.razor files from the Pages folder in the
MyBlogServerSide project to the Pages folder in the MyBlog.Shared project.

16. Right-click on the MyBlog.Shared project and then select Add | New Folder.
Name the folder Shared.

17. Move the NavMenu.razor file from the Shared folder in the
MyBlogServerSide project to the Shared folder in the
MyBlog.Shared project.

18. Add a reference to the MyBlog.Shared project by right-clicking the
Dependencies node under the MyBlogServerSide project and selecting Add
project reference.

Check the MyBlog.Shared checkbox and then click OK.
Now we have moved all the files we want to share between the projects and configured the
MyBlogServerSide project. Next, we will look at cleaning up the shared files.

Moving the components 191

Cleaning up the shared files
At this point, everything should build but we have moved files around, so let's make sure
the moved files have matching namespaces:

1. In the MyBlog.Shared project, change the namespace to MyBlog.Shared.
Components on the following files:

Components/BootstrapFieldCssClassProvider.cs

Components/ CustomCssClassProvider.cs

2. We also have a couple of files referring to that namespace. Remove @using
MyBlogServerSide.Components from the following files:

Pages/Admin/BlogPostEdit.razor

Pages/Admin/BlogPostList.razor

Pages/Admin/CategoryList.razor

Pages/Admin/TagList.razor

3. Since we removed the namespace, we need to add the new one, but we can do
that in _Imports.razor. In the MyBlog.Shared project, add the following
namespaces to the _Imports.razor file:

@using MyBlog.Shared

@using MyBlog.Shared.Components

Now we might ask ourselves, Why didn't we do that from the outset? Great question!
The best practice is to avoid having using statements inside our razor components
and always have them inside _Imports.razor.
But to show that both options work just fine, we had them in the component, but
then it was time to clean that mess up.

Fantastic! We have a couple of new projects and we have cleaned them up. Now, it is time
to add the API.

192 Sharing Code and Resources

Adding the API
We have ensured that we can access the API by splitting the data project up into two. Now
it's time to add it to the Blazor WebAssembly project. Perform the following steps:

1. In the MyBlogWebAssembly.Client project, open Program.cs and add the
following:

builder.Services.AddScoped<IMyBlogApi,
MyBlogApiClientSide>();

When we ask the dependency injection for IMyBlogApi, we will get back an
instance of MyBlogApiClientSide, which will call the API we host on the
server side (instead of direct database calls).

2. Add the following namespaces at the top of the file:

using MyBlog.Data;

using MyBlog.Data.Interfaces;

3. Delete the Pages/Index.razor file (since we will be getting that one from our
shared library instead).

4. The same goes for Shared/NavMenu.razor. Delete that file as well.
5. Open App.Razor and, in the router component, add the following as an

additional property:

AdditionalAssemblies="new[] { typeof(MyBlog.Shared.Pages.
Index).Assembly}"

This is telling the router to look for matches in the current project, but also in the
MyBlog.Shared assembly.
In this case, we ask for the nature of the index page and then get the assembly. This
way, we get a little more control (the compiler will help us) as compared to just
adding the assembly name as a string.

6. Add the following namespaces to _Imports.razor:

@using MyBlog.Shared

@using MyBlog.Shared.Shared

We add these namespaces so that our code will be able to find our pages and our
NavMenu component.

Adding static files 193

7. In the MyBlogWebAssembly.Server project, open the Startup.cs file and
replace services.AddControllersWithViews(); with the following code:

services.AddControllersWithViews().AddJsonOptions(options
=>

{

 options.JsonSerializerOptions.ReferenceHandler =
 System.Text.Json.Serialization.ReferenceHandler.
 Preserve;

 options.JsonSerializerOptions.PropertyNamingPolicy =
 null;

});

Since we are serializing Entity Framework objects, we can get a circular reference.
This way, we make sure that it won't serialize all the levels. In the book, we kept it
simple. In a real-world project, the API entities might not have circular references,
so this step might not be necessary.

This is a great way to add JSON options to our project. These are the same settings
we did in the API client in Chapter 7, Creating an API.

8. Set MyBlogWebAssembly.Server as the start up project by right-clicking the
project and selecting Set as Startup Project and pressing Ctrl + F5.

9. You should now see blogposts getting listed and you should be able to navigate to a
blog post by clicking the link.

Awesome! We now have the same Blazor components running in Blazor Server as well as
Blazor WebAssembly.

But the layout still leaves a lot to be desired, and guess what?

That is what we will fix next.

Adding static files
Blazor can use static files, such as images, CSS, and JavaScript. If we put our files in the
wwwroot folder, they will automatically be exposed to the internet and accessible from
the root of our site. The nice thing about Blazor is that we can do the same with a library,
it is super easy to distribute static files within a library.

At work, we share components between all of our Blazor projects, and the shared library
can depend on other libraries as well. We need to add a link to the static file using the
_content folder.

194 Sharing Code and Resources

Take a look at this example:

<link rel="stylesheet" href="_content/MyBlog.Shared/
MyBlogStyle.min.css" />

The HTML link tag, rel, and href are ordinary HTML tags and attributes, but by
adding the URL that starts with _content, this is telling us that the content we want to
access is in another library. The name of the library (assembly name) is followed by, in
this case, MyBlog.Shared, and then the file we want to access, which is stored in the
wwwroot folder in our library.

Blazor is, in the end, just HTML, and HTML can be styled using CSS. As mentioned, the
Blazor templates are using Bootstrap by default and we will continue to use that as well.

There is a great site with easy-to-use Bootstrap themes ready to be downloaded that can
be found at https://bootswatch.com/.

I like the Darkly theme, so that's the one we'll use, but feel free to experiment with this
later on.

CSS versus LESS versus SASS
CSS stands for Cascading Style Sheets, where you can style the output of your site. LESS
stands for Leaner Style Sheets and extends CSS. SASS stands for Syntactically Awesome
Style Sheets and works the same way as LESS.

We can use any one of these in our project. LESS and SASS make writing styles a bit easier
in my opinion. Bootstrap uses SASS, so let's do the same and download Bootstrap to our
project.

SASS transpiles to CSS and we can use nested tags. So, take a look at this CSS:

section { font-family: 'Comic Sans MS'; }

section h1, section .h1 {color: red; }

section h2, section .h2 { color: green; }

The preceding CSS can be written in SASS:

section{

 font-family:'Comic Sans MS';

 h1{color:red;}

 h2{color:green;}

}

https://bootswatch.com/

Adding static files 195

SASS has less code to write and is easier to keep track of. There are other benefits as well,
such as variables, loops, and much more besides. There are two flavors of SASS – SASS
and SCSS. We are going to use SCSS, which is the most recent, and it has brackets, so it
should feel a bit more familiar to a C# developer.

Since SASS is transpiled, we need something that can transpile the SASS to CSS. So, the
first step is to install Web Essentials 2019.

Preparing CSS/SASS
When using SASS, I prefer to have everything, or at least as much as possible, in SASS.
This means that we need to download the SASS files for Bootstrap and install an extension.

We will also bring in a new theme to our project:

1. In Visual Studio, click on the Extensions menu and select Manage Extensions.

2. Search for Web essentials 2019, select it from the search result, and then
click Download.

3. You will be prompted to restart Visual Studio. Please do so (all instances if you have
more than one open) to finish the installation.

Web Essentials 2019 is a collection of many different extensions that are useful
when developing web apps.

4. Next, we need to download the SASS files for Bootstrap. Open a web browser and
navigate to https://getbootstrap.com/docs/5.0/getting-started/
download/.

5. Click the Download Source button and extract the ZIP file.

6. In the MyBlog.Shared project, create a folder called Bootstrap.

7. Copy the scss folder from the ZIP file into the Bootstrap folder.

8. Next, we need to download a new theme. Navigate to https://bootswatch.
com/darkly/.

9. In the top menu called Darkly, there are some links. Download _bootswatch.
scss and _variables.scss.

10. In the MyBlog.Shared project, create three new folders so that the new structure
looks like this: Bootswatch/Dist/Darkly.

https://getbootstrap.com/docs/5.0/getting-started/download/
https://getbootstrap.com/docs/5.0/getting-started/download/
https://bootswatch.com/darkly/
https://bootswatch.com/darkly/

196 Sharing Code and Resources

11. Copy _bootswatch.scss and _variables.scss into the Darkly folder.

12. Since we have installed Web Essentials, we can now use one of the extensions.

13. We can now create a new SASS file by doing this:

Select the wwwroot folder and press Shift + F2, which will show a small dialog
where you can supply a filename. It will use the file extension to load the correct
template. Name the file MyBlogStyle.scss.

14. In the new file, add the following:

@import "../Bootswatch/Dist/Darkly/_variables";

@import "../Bootstrap/scss/bootstrap";

@import "../Bootswatch/Dist/Darkly/_bootswatch";

This will import the Bootswatch variables, as well as the Bootstrap and Bootswatch
files, and, when generated, it will take all the files and put them in a single file.

15. We get some styles with Blazor that we can move to our SCSS file. We want to keep
the styles for the error message box from site.css.

Add the following at the end of MyblogStyle.scss:
.content {

 padding-top: 1.1rem;

}

.navbar-brand

{

 margin-left:30px;

}

.bi

{

 margin-right:5px;

}

#blazor-error-ui {

 background: lightyellow;

 bottom: 0;

 box-shadow: 0 -1px 2px rgba(0, 0, 0, 0.2);

 display: none;

 left: 0;

 padding: 0.6rem 1.25rem 0.7rem 1.25rem;

Adding static files 197

 position: fixed;

 width: 100%;

 z-index: 1000;

}

#blazor-error-ui .dismiss {

 cursor: pointer;

 position: absolute;

 right: 0.75rem;

 top: 0.5rem;

}

So, in this case, we are mixing SASS (Bootstrap and Bootswatch) with the CSS that
came with the Blazor template.

16. Right-click on the MyBlogStyle.scss file and select Web compiler | Compile file.

You will notice that it will create four new files. First, we have MyBlogStyle.
css and MyBlogStyle.min.css, which is the generated CSS and a minified
version of CSS. They are located under the MyBlogStyle.css node. We also get
compilerconfig.json and compilerconfig.json.defaults, which are
the settings for the web compiler.

Now we have all the prerequisites in place and CSS that we can add to our site.

Adding CSS to MyBlogServerSide
Now it's time to add the new style to our sites. Let's start with MyBlogServerSide:

1. Open Pages/_Host.cshtml.

2. Remove these rows:

<link rel="stylesheet" href="css/bootstrap/bootstrap.min.
css" />

<link href="css/site.css" rel="stylesheet" />

3. Add a reference to our new stylesheet (containing both Bootstrap and the
BootSwatch Darkly theme):

<link rel="stylesheet" href="_content/MyBlog.Shared/
MyBlogStyle.min.css" />

198 Sharing Code and Resources

4. Open App.Razor and, in the router component, add the following as an
additional property:

AdditionalAssemblies="new[] { typeof(MyBlog.Shared.Pages.
Index).Assembly}"

This is the same thing we did for our WebAssembly project earlier in the chapter.

5. In _Imports.Razor, add the following namespaces:

@using MyBlog.Shared

@using MyBlog.Shared.Shared

6. Set MyBlogServerSide as the start up project and run the project by pressing
Ctrl + F5.

Great! Our Blazor Server project is now updated to use the new style.

Adding CSS to MyBlogWebAssembly.Client
Now let's do the same with the Blazor WebAssembly project:

1. In the MyBlogWebAssembly.Client project, open wwwroot/index.html:
2. Remove the following lines:

<link href="css/bootstrap/bootstrap.min.css"
rel="stylesheet" />

<link href="css/app.css" rel="stylesheet" />

3. Add the CSS:

<link rel="stylesheet" href="_content/MyBlog.Shared/
MyBlogStyle.min.css" />

4. Set MyBlogwebAssembly.Server as the start up project and run the project by
pressing Ctrl + F5.

Now we have the same layout for both projects.

Making the admin interface more useable
Let's now clean it up some more. We have only started with the admin functionality, so
let's make it more accessible. The menu on the left is no longer required, so let's change it
so that the menu is only visible if you are an administrator.

Adding static files 199

We need to implement the change in both projects:

1. Open MyBlogWebAssembly.Client/Shared/MainLayout.razor and put
AutorizeView around the sidebar div like this:

<AuthorizeView Roles="Administrator">

 <div class="sidebar">

 <NavMenu />

 </div>

</AuthorizeView>

2. Do the same thing with MyBlogServerSide/Shared/MainLayout.razor.
3. Set MyBlogServerSide as the start up project and run it by pressing Ctrl + F5.
4. Verify that the menu is only visible when you are logged in by logging in and out.

Now we need to make the menu look better. Even though the counter is really fun
to click on, it doesn't make much sense when it comes to our blog.

Since the nav menu is now shared, we can put it in one place and it will change for both
Blazor Server and Blazor WebAssembly.

Making the menu more useful
We should replace the links with links to our admin pages instead and you may have
noticed that the icons in the links have disappeared (since we removed the old CSS), but
fear not, as Bootstrap has some icons we can use:

1. Open a web browser and navigate to https://github.com/twbs/icons/
releases/latest/.

2. At the bottom of the page under the Assets header, there is a link to bootstrap-
icons-{versionnumber}.zip. Download that file.

3. Once it's downloaded, extract the ZIP and copy bootstrap-Icons-
{versionnumber} to the wwwroot folder in our MyBlog.Shared project.

In the MyBlogStyle.scss add the following line:
@import "./bootstrap-icons-1.4.1/bootstrap-icons";

In this case, it's the 1.4.1 version, and you can change that depending on the
version number.

Since SASS is fully CSS compatible, we can import the CSS like this and since there
are files (font files) that the browser needs to access, we put it in the wwwroot folder.

https://github.com/twbs/icons/releases/latest/
https://github.com/twbs/icons/releases/latest/

200 Sharing Code and Resources

4. We also need to make a small change at the top of the wwwroot\bootstrap-
icons-1.4.1\font\bootstrap-icons.css file.

The path to the files needs to be the correct one taking into account that the file is
in a library.

Change the top of the file (the only thing that changed is the path) ./fonts to /_
content/MyBlog.Shared/bootstrap-icons-1.4.1/fonts:

@font-face {

font-family: "bootstrap-icons";

src: url("/_content/MyBlog.Shared/
bootstrap-icons-1.4.1/fonts/bootstrap-icons.
woff2?231ce25e89ab5804f9a6c427b8d325c9") format("woff2"),
url("/_content/MyBlog.Shared/bootstrap-icons-1.4.1/fonts/
bootstrap-icons.woff?231ce25e89ab5804f9a6c427b8d325c9")
format("woff");

}

5. Click on MyBlog.Shared/wwwroot/bootstrap-icons-1.4.1/fonts/
bootstrap-icons.woff and make sure that Copy to Output directory is set to
Copy if newer.

6. Click on MyBlog.Shared/wwwroot/bootstrap-icons-1.4.1 /fonts/
bootstrap-icons.woff2 and make sure that Copy to Output directory is set
to Copy if newer.

7. In the MyBlog.Shared project, open the Shared/Navmenu.razor file.

Edit the code so that it looks like this (keep the code block as is):
<div class="top-row pl-4 navbar navbar-dark">

 MyBlog Admin

 <button class="navbar-toggler"
 @onclick="ToggleNavMenu">

 </button>

</div>

<div class="@NavMenuCssClass" @onclick="ToggleNavMenu">

 <ul class="nav flex-column">

 <li class="nav-item px-3">

 <NavLink class="nav-link" href=""
 Match="NavLinkMatch.All">

Adding static files 201

 <span class="bi bi-house-door"
 aria-hidden="true"> Home

 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link"
 href="Admin/Blogposts">
 <span class="bi bi-signpost-2"
 aria-hidden="true"> Blog posts
 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link"
 href="Admin/Tags">
 <span class="bi bi-tags"
 aria-hidden="true"> Tags
 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link"
 href="Admin/Categories">
 <span class="bi bi-collection"
 aria-hidden="true"> Categories
 </NavLink>

</div>

We changed the links and the icons in the file.

Making the blog look like a blog
The admin interface is done (at least for now) and we should focus on the front page of
our blog. The front page should have the title of the blog post and some descriptions. For
my blog, I have taken the first paragraph as a teaser, so this is something we might do here
as well:

1. In the MyBlog.Shared project, open the Pages/index.razor file.
2. We no longer need fake blog posts, so let's remove the button from the top of the

page, as well as the
 tag.

202 Sharing Code and Resources

3. Remove the AddSomePosts method. Now, when we have an admin, we can create
our posts.

4. To be able to get the first paragraph, we need to add the following method:

public string GetFirstParagraph(string html)

{

 var m = System.Text.RegularExpressions.
 Regex.Matches(html, @"<p>(.*?)</p>",System.Text.
 RegularExpressions.RegexOptions.Singleline);

 if (m.Count>0)

 {

 return m[0].Groups[1].Value;

 }

 else

 {

 return "";

 }

}

It uses a regular expression to find the content between the first <p> tag and the
first </p> tag.
If no paragraph is found, it returns an empty string. We could take the first 100
letters or so, but that might cut words in half or make the rest of the posts look odd
because we are missing a close tag.
In this case, we keep this part simple. It should be easy, so make sure there is a
paragraph in our blog posts.

5. Inside the Virtualize component, change the content (RenderFragment) to
the following:

<article>

 <h2>@p.Title</h2>

 @((MarkupString)GetFirstParagraph(Markdig.Markdown.
 ToHtml(p.Text, pipeline)))

 Read more

</article>

Also remove the tag.

For this code to work, we also need to add the code for Markdig.

Adding static files 203

6. Add a using statement for Markdig at the top of the file:

@using Markdig;

7. Add an OnInitializedAsync method that will handle the instantiation of the
Markdig pipeline (this is the same code we have in the post.razor file):

MarkdownPipeline pipeline;

protected override Task OnInitializedAsync()

{

 pipeline = new MarkdownPipelineBuilder()

 .UseEmojiAndSmiley()

 .Build();

 return base.OnInitializedAsync();

}

8. Now, run the project using Ctrl + F5 and take a look at our new front page.

Sharing problems
When sharing code, there are some things we need to think about. Things worked fine
with Blazor Server (due to low latency from the database), but some problems will surface
now and again when we go through an API:

1. In the MyBlog.Shared project, open Pages/Admin/BlogPostEdit.razor.

There are two bugs in this file that worked when we ran this on Blazor Server. We
are looping over the Categories and Tags lists; both are nullable.

We should always check whether objects might be null before we loop over them.
I kept this bug in there to show that what was working fine on Blazor Server might
not work on Blazor WebAssembly.

However, we should always perform null checks.

2. Add a null check around the category loop:

@if (Categories != null)

{

@foreach (var category in Categories)

 {

 <option value="@category.Id">@category.Name
 </option>

204 Sharing Code and Resources

}

}

3. Add a null check around the tag loop:

@if (Tags != null)

 {

 @foreach (var tag in Tags)

 {

 @tag.Name

 @if (Post.Tags.Any(t => t.Id ==

 tag.Id))

 {

 <button type="button"
 @onclick="@(() => {
 Post.Tags.Remove
 (Post.Tags.Single(t => t.Id
 == tag.Id)); })">Remove
 </button>

 }

 else

 {

 <button type="button"
 @onclick="@(() =>
 { Post.Tags.Add(tag); })">
 Add</button>

 }

 }

 }

It's good to keep in mind to always check for nulls, but sometimes these things sneak past
us. When sharing code, it is always good to go through the code one more time.

CSS isolation 205

CSS isolation
In .NET 5, Microsoft added something called isolated CSS. This is something that many
other frameworks have as well. The idea is to write CSS specifically for one component.
The upsides, of course, are that the CSS that we create won't impact any of the other
components.

The template for Blazor uses isolated CSS for Shared/MainLayout.razor
and NavMenu.Razor. If you expand Shared/MainLayout.razor in the
MyBlogWebAssebly.Client project, you'll see a file called MainLayout.razor.
css.

You can also use SASS here by adding a file called MainLayout.razor.scss. The
important thing is that the file we add should generate a file called MainLayout.
razor.css in order for the compiler to pick it up.

This is a naming convention that will make sure to rewrite CSS and the HTML output.

CSS has the following naming convention:

.main {

 flex: 1;

}

It will be rewritten as follows:

.main[b-bfl5h5967n] {

 flex: 1;

}

This means that the elements need to have an attribute called b-bfl5h5967n (in this
case) in order for the style to be applied.

The div tag that has the CSS tag within the MainLayout component will be outputted
like this:

<div class="main" b-bfl5h5967n>

For all of this to happen, we also need to have a link to the CSS (which is provided by the
template) and it looks like this:

<link href="{Assemblyname}.styles.css" rel="stylesheet">

206 Sharing Code and Resources

This now becomes useful for component libraries. We have one component that has
isolated CSS in our shared library (NavMenu) and the CSS for the NavMenu component
is included in the {Assemblyname}.styles.css file.

We don't have to do anything extra in order for our shared CSS to be included. If you are
creating a library for anyone to use, I would think about using the isolated CSS approach,
if your components need some kind of CSS to work properly.

This way, our users won't have to add a reference to our CSS and there is no risk of our
CSS breaking something in the user's app (since it's isolated). I prefer to write CSS that
works for the whole site rather than just for one component. I think it is easier to keep
track of that way.

Many in the community use the same argument as a reason to use isolated CSS (easier
to keep track of). I do like the fact that it lives closer to the component. We now have a
working admin interface and a good-looking site (yeah, I know it's not perfect, but now
we know how to deal with styles).

Summary
In this chapter, we have moved components into a shared library and used that library
with both our Blazor Server and Blazor WebAssembly projects.

Using shared libraries like this is the way to create shared libraries (for others to use) and
it is also a great way to structure our in-house projects (so that it is easy to change from
Blazor Server to Blazor WebAssembly, or the other way around). If you have a site already,
you can build your Blazor components in a shared library, as we did in the chapter.

By using components as part of your existing site (using Blazor Server), you can get
started with Blazor bit by bit until you have converted the whole thing. When that is done,
you can decide whether or not to keep using Blazor Server (as I mentioned, we use Blazor
Server at work) or move to Blazor WebAssembly.

We also learned how we can use dependency injection to use different ways of accessing
data depending on the platform. And last but not least, we talked about how to use SASS
and CSS in our site, both regular CSS and isolated CSS.

In the next chapter, we will learn about the one thing we are trying to avoid (at least I am)
as Blazor developers – JavaScript.

10
JavaScript Interop

In this chapter, we will take a look at JavaScript. In certain scenarios, we still need to
use JavaScript or we want to use an existing library that relies on JavaScript. Blazor uses
JavaScript to update the Document Object Model (DOM), download files, and access
things such as local storage on the client.

So, there are, and always will be, cases when we need to communicate with JavaScript, or
have JavaScript communicate with us. Don’t worry. The Blazor community is an amazing
one, so chances are someone has already built the interop that we need.

In this chapter, we will cover the following topics:

• Why do we need JavaScript?

• .NET to JavaScript

• JavaScript to .NET

• Implementing an existing JavaScript library

Technical requirements
Make sure that you have followed the previous chapters or use the Chapter09 folder as a
starting point.

You can find the source code for this chapter’s end result at https://github.
com/PacktPublishing/Web-Development-with-Blazor/tree/master/
Chapter10.

https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter10
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter10
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter10

208 JavaScript Interop

Note
If you are jumping into this chapter using the code from GitHub, make sure to
register the user with an email and follow the instructions for adding a user and
adding the Administrator role to the database. You can find the instructions in
Chapter 8, Authentication and Authorization.

Why do we need JavaScript?
Many say that Blazor is the JavaScript killer, but the truth is that Blazor needs JavaScript
in order to work. Some events only get triggered in JavaScript, and if we want to use those
events, we need to make an interop.

I jokingly say that I have never written so much JavaScript as when I started developing
with Blazor. Calm down… it’s not that bad.

I have written a couple of libraries that require JavaScript in order to work. They are called
Blazm.Components and Blazm.Bluetooth.

The first one is a grid component and uses JavaScript interop to trigger C# code
(JavaScript to .NET) when the window is resized to remove columns if all of them can’t fit
inside the window.

When that is triggered, the C# code calls JavaScript to get the size of the columns based on
the client width, something that only the web browser knows, and, based on that answer,
it removes columns if needed.

The second one, Blazm.Bluetooth makes it possible to interact with Bluetooth
devices using Web Bluetooth, which is a web standard accessible through, you guessed it,
JavaScript.

It uses two-way communication; Bluetooth events can trigger C# code and C# code
can iterate over devices and send data to them. They are both open source, so if you are
interested in taking a look at a real-world project, you can check them out on my GitHub:
https://github.com/EngstromJimmy.

I would argue that in most cases, we won’t need to write JavaScript ourselves. The Blazor
community is really big, so chances are that someone has already written what we need.
But, we don't need to be afraid of using JavaScript either, next we will take a look at
different ways to add JavaScript calls to our Blazor project.

https://github.com/EngstromJimmy

.NET to JavaScript 209

.NET to JavaScript
Calling JavaScript from .NET is pretty simple. There are two ways of doing that:

• Global JavaScript

• JavaScript Isolation

We will go through both ways to see what the difference is.

Global JavaScript (the old way)
One way is to make the JavaScript method we want to call accessible globally through
the JavaScript window, which is kind of a bad practice since it is accessible by all scripts
and could replace the functionality in other scripts (if we were to accidentally use the
same names).

What we can do is, for example, to use scopes, create an object in the global space, and put
our variables and methods on that object so that we lower the risk a bit at least.

Using a scope could look something like this:

window.myscope = {};

window.myscope.methodName = () => { ... }

We create an object with the name myscope. Then we declare a method on that object
called methodName. In this example, there is no code in the method; this is only to
demonstrate how it could be done.

Then, to call the method from C#, we would call it using JSRuntime like this:

@inject IJSRuntime jsRuntime

await jsRuntime.InvokeVoidAsync(“myscope.methodName “);

There are two different methods we can use to call JavaScript:

• InvokeVoidAsync, which calls JavaScript, but doesn’t expect a return value

• InvokeAsync<T>, which calls JavaScript and expects a return value of type T

We can also send in parameters to our JavaScript method if we would like. We also need
to refer to JavaScript, and JavaScript must be stored in the wwwroot folder.

The other way is JavaScript Isolation, which uses the methods described here, but
with modules.

210 JavaScript Interop

JavaScript Isolation
In .NET 5, we got a new way to add JavaScript using JavaScript Isolation, which is a much
nicer way to call JavaScript. It doesn’t use global methods and it doesn’t require us to refer
to the JavaScript file.

This is awesome for both component vendors and end users because JavaScript will be
loaded when we need it. It will only be loaded once (Blazor handles that for us) and we
don’t need to add a reference to the JavaScript file, which makes it easier to start and use
a library.

So, let’s implement that instead.

Isolated JavaScripts need to be stored in the wwwroot folder as well. We can’t have
the JavaScript file nicely tucked in under the component node, at least not with the
built-in functionality.

After discussing this with Mads Kristensen (Program Manager for Visual Studio and the
author of the Web Essentials Extension), he suggested that perhaps we could use another
functionality in Visual Studio to make it work.

Let’s do just that!

In our project, we can delete categories and components. Let’s implement a simple
JavaScript call to reveal a prompt to make sure that the user wants to delete the category
or tag:

1. In the MyBlog.Shared project, select the Components/ItemList.razor file,
create a new file by pressing Shift + F2, and name the file ItemList.razor.js.

2. Open the new file and add the following code:

export function showConfirm(message) {

 return confirm(message);

}

JavaScript Isolation uses the standard ES modules and can be loaded on-demand.
The methods it exposes are only accessible through that object and not globally, as
with the old way.

3. Open ItemList.razor and inject IJSRuntime at the top of the file:

@inject IJSRuntime jsRuntime

.NET to JavaScript 211

4. In the code section, let’s add a method that will call JavaScript:

IJSObjectReference jsmodule;

private async Task<bool> ShouldDelete()

{

 jsmodule = await jsRuntime.
 InvokeAsync<IJSObjectReference>(“import”, “/_content/
 MyBlog.Shared/ItemList.razor.js”);

 return await jsmodule.InvokeAsync<bool>
 (“showConfirm”, “Are you sure?”);

}

IJSObjectReference is a reference to the specific script that we will import
further down. It has access to the exported methods in our JavaScript, nothing else.

We run the Import command and send the filename as a parameter. This will run
the JavaScript command, let mymodule = import(“/_content/MyBlog.
Shared/ItemList.razor.js”), and return the module.

Now we can use that module to access our showConfirm method and send in the
argument “Are you sure?”.

5. Change the Delete button we have in the component to the following:

<td><button class=”btn btn-danger” @onclick=”@(async
()=>{ if (await ShouldDelete()) { await DeleteEvent.
InvokeAsync(item); } })”>Delete</button></td>

Instead of just calling our Delete event callback, we first call our new method. Let
JavaScript confirm that you really want to delete it, and if yes, then run the Delete
event callback.

But there is one more thing we need to do, and we have two options here. We could
move ItemList.razor.js to the wwwroot folder (and keep it there). Or we
can let Visual Studio do it and keep the file close to the component.

I prefer the second option.

In a Blazor project, we can right-click on the project file and select Manage Client-
Side libraries, which will create libman.json, but since this is a library, we need
to create it manually.

6. Click on MyBlog.Shared, press Shift + F2, and name the file libman.json.

212 JavaScript Interop

7. Replace the content in the file with the following code:

{

 “version”: “1.0”,

 “defaultProvider”: “filesystem”,

 “libraries”: [

 {

 “library”: “Components”,

 “files”: [

 “*.js”

],

 “destination”: “wwwroot/”

 }

]

}

The libman.json file is the configuration file for Library Manager and it will
copy all the files with the .js extension to wwwroot.

8. To make the script run, we build the project by right-clicking the MyBlog.Shared
project and selecting Edit Project file.

9. Add the following code somewhere in the file:

 <ItemGroup>

 <PackageReference

 Include=”Microsoft.Web.LibraryManager.Build”
 Version=”2.1.76” />

 </ItemGroup>

There are some gotchas with this method. The script will run only if we make
changes to files that needs to be compiled. So we may find ourselves in a situation
where we made a change but the change didn’t seem to go through.

Make sure that the script ran. You can just save the libman.json file to make it run.
This workaround is pretty nice since we can keep the JavaScript file, Razor, CSS, and code
together in the same place. This method is not entirely hassle-free. In some cases, we’ll
need to delete the JavaScript file manually from the wwwroot folder.

The alternative is to put the file in the wwwroot folder to start with.

JavaScript to .NET 213

JavaScript to .NET
What about the other way around? I would argue that calling .NET code from JavaScript
isn’t a very common scenario, and if we find ourselves in that scenario, we might want to
think about what we are doing.

I think that as Blazor developers, we should avoid using JavaScript as far as possible. There
are, of course, times where JavaScript is the only option, and as I mentioned earlier, Blazm
uses communication both ways.

There are three ways of doing a callback from JavaScript to .NET code:

• Static .NET method call

• Instance method call

• Component instance method call

Let's take a closer look at them.

Static .NET method call
To call a .NET function from JavaScript, we can make the function static and we also need
to add the JSInvokable attribute to the method.

We can add a function such as this in the code section of a Razor component, or inside
a class:

[JSInvokable]

public static Task<int[]> ReturnArrayAsync()

{

 return Task.FromResult(new int[] { 1, 2, 3 });

}

In the JavaScript file, we can call that function using the following code:

DotNet.invokeMethodAsync(‘BlazorWebAssemblySample’,
‘ReturnArrayAsync’)

 .then(data => {

 data.push(4);

 console.log(data);

 });

The DotNet object comes from the Blazor.js or blazor.server.js file.

214 JavaScript Interop

BlazorWebAssemblySample is the name of the assembly, and ReturnArrayAsync
is the name of the static .NET function.

It is also possible to specify the name of the function in the JSInvokeable attribute if
we don’t want it to be the same as the method name like this:

[JSInvokable(“DifferentMethodName”)]

In this sample, JavaScript makes a call back to .NET code, which returns an int array.

It is returned as a promise in the JavaScript file that we are waiting for, and then (using
the then operator) we continue with the execution, adding a 4 to the array and then
outputting the values in the console.

Instance method call
This method is a little bit tricky; we need to pass an instance of the .NET object to be able
to call it (this is the method that Blazm.Bluetooth is using).

First, we need a class that will handle the method call:

using Microsoft.JSInterop;

public class HelloHelper

{

 public HelloHelper(string name)

 {

 Name = name;

 }

 public string Name { get; set; }

 [JSInvokable]

 public string SayHello() => $”Hello, {Name}!”;

}

This is a class that takes a string (a name) in the constructor and a method called
SayHello that returns a string containing “Hello,” and the name we supplied when
we created the instance.

JavaScript to .NET 215

So, what we need to do is to create an instance of that class, supply a name, and create
DotNetObjectReference<T>, which will give JavaScript access to the instance.

But first, we need JavaScript that can call the .NET function:

export function sayHello (hellohelperref) {

 return hellohelperref.invokeMethodAsync(‘SayHello’)
 .then(r => console.log(r));

}

In this case, we are using the export syntax and we export a function called sayHello,
which takes an instance of DotNetObjectReference called dotnetHelper.

In that instance, we invoke the SayHello method, which is the SayHello method on the
.NET object. In this case, it will be a reference to an instance of the HelloHelper class.

We also need to call the JavaScript method and we can do that from a class or, in this case,
from a component:

@page “/interop”

@inject IJSRuntime jsRuntime

@implements IDisposable

<button type=”button” class=”btn btn-primary” @onclick=”async
()=> { await TriggerNetInstanceMethod(); }”>
 Trigger .NET instance method HelloHelper.SayHello
</button>

@code {

 private DotNetObjectReference<HelloHelper> objRef;

 IJSObjectReference jsmodule;

 public async ValueTask<string>

 TriggerNetInstanceMethod()

 {

 objRef = DotNetObjectReference.Create(new
 HelloHelper(“Bruce Wayne”));

 jsmodule = await jsRuntime.
 InvokeAsync<IJSObjectReference>(“import”, “/_content/
 MyBlog.Shared/Interop.razor.js”);

216 JavaScript Interop

 return await
 jsmodule.InvokeAsync<string>(“sayHello”, objRef);

 }

 public void Dispose()

 {

 objRef?.Dispose();

 }

}

Let’s go through the class. We inject IJSRuntime because we need one to call the
JavaScript function. To avoid any memory leaks, we also have to make sure to implement
IDiposable and, toward the bottom of the file, we make sure to dispose of the
DotNetObjectReference instance.

We create a private variable of the DotNetObjectReference<HelloHelper>
type, which is going to contain our reference to our HelloHelper instance. We create
IJSObjectReference so that we may load our JavaScript function.

Then we create an instance of DotNetObjectReference.Create(new
HelloHelper(“Bruce Wayne”)) of our reference to a new instance of the
HelloHelper class, which we supply with the name “Bruce Wayne”.

Now we have objref, which we will send to the JavaScript method, but first, we load
the JavaScript module and then we call JavaScriptMethod and pass in the reference
to our HelloHelper instance. Now, the JavaScript sayHello method will run
hellohelperref.invokeMethodAsync(‘SayHello’), which will make a call to
SayHelloHelper and get back a string with “Hello, Bruce Wayne”.

There are two more ways that we can use to call .NET functions from JavaScript. We
can call a method on a component instance where we can have an action triggered. It is,
however, not a recommended approach for Blazor Server. We can also call a method on a
component instance by using a helper class.

Since calling .NET from JavaScript is pretty rare, we won’t go into examples of the
two. Instead, we’ll dive into things to think about when implementing an existing
JavaScript library.

Implementing an existing JavaScript library 217

Implementing an existing JavaScript library
The best approach, in my opinion, is to avoid porting JavaScript libraries. Blazor needs to
keep the DOM and the render tree in sync, and having JavaScript manipulate the DOM
can jeopardize that.

Most component vendors, such as Telerik, Synfusion, Radzen, and, of course, Blazm, have
native components, which means that they don’t just wrap a JavaScript library but are
written specifically for Blazor in C#. Even though the components use JavaScript in some
capacity, the goal is to keep that to a minimum.

So, if you are a library maintainer, my recommendation would be to write a native Blazor
version of the library, keep JavaScript to a minimum, and, most importantly, do not make
Blazor developers have to write JavaScript to use your components.

Some components will not be able to use JavaScript implementations since they need to
manipulate the DOM.

Blazor is pretty smart when it comes to syncing the DOM and render tree, but try to avoid
manipulating the DOM. If we need to use JavaScript for something, make sure to put a tag
outside the manipulation area. Blazor will then keep track of that tag and will not think
about what is inside the tag.

Since we started with Blazor at my workplace very early, many of the vendors were not
fully done with their Blazor components yet. We needed a graph component fast. In our
previous website (before Blazor), we used a component called Highcharts.

Highcharts is not a free component, but it’s free to use for non-commercial projects.
When building our wrapper, we had a couple of things that we wanted to make sure of.
We wanted the component to work in a similar way to the existing one and we wanted it
to be as simple to use as possible.

Let’s walk through what we did.

First, we added a reference to the Highcharts JavaScript:

<script src=”https://code.highcharts.com/highcharts.js”></
script>

And then we added a JavaScript file as follows:

export function loadHighcharts(id, json) {

var obj = looseJsonParse(json);

 Highcharts.chart(id, obj);

218 JavaScript Interop

};

export function looseJsonParse(obj) {

 return Function(‘”use strict”;return (‘ + obj + ‘)’)();

}

The loadHighchart method takes id of the div tag, which should be converted to a
chart and the JSON for configuration.

There is also a method that converts the JSON to a JSON object so that it can be passed
into the chart method.

The Highchart Razor component looks like this:

@inject Microsoft.JSInterop.IJSRuntime jsruntime

<div>

 <div id=”@id.ToString()”></div>

</div>

@code

{

 [Parameter] public string Json { get; set; }

 private string id { get; set; } = “Highchart” +
 Guid.NewGuid().ToString();

 protected override void OnParametersSet()

 {

 StateHasChanged();

 base.OnParametersSet();

 }

 IJSObjectReference jsmodule;

 protected async override Task OnAfterRenderAsync(bool
 firstRender)

 {

 if (!string.IsNullOrEmpty(Json))

 {

 jsmodule = await jsruntime.

Implementing an existing JavaScript library 219

 InvokeAsync<IJSObjectReference>(“import”, “/_
 content/MyBlog.Shared/HighChart.razor.js”);

 await jsmodule.InvokeAsync<string>
 (“loadHighcharts”, new object[] { id, Json });

 }

 await base.OnAfterRenderAsync(firstRender);

 }

}

The important thing to notice here is that we have two nested div tags, one on the outside
that we want Blazor to track, and one on the inside that Highchart will add things to.

There is a JSON parameter where we pass in the JSON for the configuration
and then we call our JavaScript function. We run our JavaScript interop in the
OnAfterRenderAsync method because otherwise, it would throw an exception, as you
may recall from Chapter 4, Understanding Basic Blazor Components.

Now, the only thing left is to use the component, and that looks like this:

@page “/HighChartTest”

<HighChart Json=”@chartjson”>

</HighChart>

@code {

 string chartjson = @” {

 chart: { type: ‘pie’ },

 series: [{

 data: [{

 name: ‘Does not look like Pacman’,

 color:’black’,

 y: 20,

 }, {

 name: ‘Looks like Pacman’,

 color:’yellow’,

 y: 80

 }]

 }]

220 JavaScript Interop

}”;

}

This test code will show a pie chart that looks like Figure 10.1:

Figure 10.1 – Chart example

We have now gone through how we got a JavaScript library to work with Blazor, so this is
an option if there is something we need.

As mentioned, the components’ vendors are investing in Blazor, so chances are that
they have what we need, so we might not need to invest time in creating our own
component library.

Summary
In this chapter, we learned about calling JavaScript from .NET as well as calling .NET
from JavaScript. In most cases, we won’t need to do JavaScript calls, and chances are that
the Blazor community or component vendors have solved the problem for us.

We also looked at how we can port an existing library if we need to.

In the next chapter, we will take a look at state management.

11
Managing State

In this chapter, we will take a look at managing state. Most applications manage state in
some form.

A state is simply information that is persisted in some way. It can be data stored in a
database, session states, or even something stored in a URL.

The user state is stored in memory either in the web browser or at the server. It contains
the component hierarchy and the most recent rendered UI (Render Tree). It also contains
the values or fields and properties in the component instances as well as the data stored in
service instances in dependency injection.

If we make JavaScript calls, the values we set are also stored in memory. Blazor Server
relies on the circuit (SignalR connection) to hold the user state, and Blazor WebAssembly
relies on the browser's memory. If we reload the page, the circuit and the memory will be
lost. Managing state is not about handling connections or connection issues, but rather
how can we keep the data even if we reload the web browser.

Saving state between page navigations or sessions improves the user experience and could
be the difference between a sale or not. Imagine reloading the page and all our items in the
shopping cart were gone; chances are you won't shop there again.

Now imagine coming back to a page a week or month later and all those things are
still there.

222 Managing State

In this chapter, we will cover the following topics:

• Storing data on the server side

• Storing data in the URL

• Implementing browser storage

• Using an in-memory state container service

Some of these things we have already talked about and even implemented. Let's take this
opportunity to recap the things we have already talked about as well as introduce some
new techniques.

Technical requirements
Make sure you have followed the previous chapters or use the Chapter10 folder as a
starting point.

You can find the source code for this chapter's end result at https://github.
com/PacktPublishing/Web-Development-with-Blazor/tree/master/
Chapter11.

Note
If you are jumping into this chapter using the code from GitHub, make sure to
register the user with an email and follow the instructions for adding a user and
adding the Administrator role to the database. You can find the instructions in
Chapter 8, Authentication and Authorization.

Storing data on the server side
There are many different ways in which to store data on the server side. The only thing
to remember is that Blazor WebAssembly will always need an API. Blazor Server doesn't
need an API since we can access the server-side resourcesdirectly.

I have had discussions with many developers when it comes to APIs or direct access
and it all boils down to what you intend to do with the application. If you are building a
Blazor Server application and have no interest in moving to Blazor WebAssembly, I would
probably go for direct access, as we have done in the MyBlog project.

https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter11
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter11
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter11

Storing data in the URL 223

I would not do direct database queries in the components though. I would keep it in an
API, just not a Web API. As we have seen, exposing those API functions in an API, as we
did in Chapter 7, Creating an API, and Chapter 9, Sharing Code and Resources, is not a lot
of steps. We can always start with direct sever access and move to an API if we want to.

When it comes to ways of storing data, we can save data in Blob storage, key-value storage,
a relational database (like we did), or table storage.

There is no end to the possibilities. If .NET can communicate with the technology, we will
be able to use it.

Storing data in the URL
At first glance, this option might sound horrific, but it's not. Data, in this case, can be
the blog post ID or the page number if we are using paging. Typically, the things you
want to save in the URL are things you want to be able to link to later on, such as blog
posts in our case.

To read a parameter from the URL, we use the following syntax:

@page "/post/{BlogPostId:int}"

The URL is post followed by Id of the post.

To find that particular route, BlogPostId must be an integer, otherwise the route
won't be found.

We also need a public parameter with the same name:

 [Parameter]

 public int BlogPostId{ get; set; }

If we store data in the URL, we need to make sure to use the OnParametersSet
or OnParametersSetAsync methods, otherwise the data won't get reloaded
if we change the parameter. If the parameter changes, Blazor won't run
OnInitializedAsync again.

This is why our post.razor component loads the things that change based on the
parameter in the URL in OnParametersSet, and load the things that are not affected
by the parameter in OnInitializedAsync.

We can use optional parameters by specifying them as nullable like this:

@page "/post/{BlogPostId:int?}"

224 Managing State

Route constraints
When we specify what type the parameter should be, this is called a route constraint. We
add a constraint so the match will only happen if the parameter value can be converted
into the type we specified.

The following constraints are available:

• bool

• datetime

• decimal

• float

• guid

• int

• long

The URL elements will be converted to a CLR object. Therefore, it's important to use an
invariant culture when adding them to a URL.

Using a query string
So far we have only talked about routes that are specified in the page directive, but we can
also read data from the query string.

NavigationManager gives us access to the URI, so by using this code, we can access
the query string parameters:

@inject NavigationManager Navigation

@code{

var query = new Uri(Navigation.Uri).Query;

}

We won't dig deeper into this, but now we know that it is possible to access query string
parameters if we need to.

Scenarios that are not that common
Some scenarios might not be as common to use, but I didn't want to leave them out of
the book completely since I have used them in some of my implementations. I want to
mention them in case you might run into the same requirements as I did.

Storing data in the URL 225

By default, Blazor will assume that a URL that contains a dot is a file and will try and serve
the user a file (and will probably not find one if we are trying to match a route).

By adding the following in Startup.cs to the Blazor WebAssembly server project (a
server-hosted WebAssembly project), the server will redirect the request to the index.
html file:

endpoints.MapFallbackToFile("/example/{param?}", "index.html");

If the URL is example/some.thing, it will redirect the request to the Blazor WebAssembly
entry point and the Blazor routes will take care of it. Without it, the server would just say
file not found.

The routing, including a dot in the URL, will work, and to do the same, we would need to
add the following to Startup.cs in our Blazor Server project:

endpoints.MapFallbackToPage("/example/{param?}", "/_Host");

We are doing the same thing here, but instead of redirecting to index.html, we are
redirecting to _Host, which is the entry point for Blazor Server. The other scenario that is
not that common is to handle routes that will catch everything.

Simply put, we are catching a URL that has multiple folder boundaries, but we are
catching them as one parameter:

@page "/catch-all/{*pageRoute}"

@code {

 [Parameter]

 public string PageRoute{ get; set; }

}

The preceding code will catch "/catch-all/OMG/Racoons/are/awesome" and the
pageRoute parameter will contain "OMG/Racoons/are/awesome".

I used both techniques when I created my own blog in order to be able to keep the
old URLs and make them work even though everything else (including the URLs) had
been rewritten.

Having data in the URL is not really storing the data we always have to make sure to
include it in the URL. If we want to store data that we don't need to include every time in
the URL, we can use the browser storage instead.

226 Managing State

Implementing browser storage
The browser has a bunch of different ways of storing data in the web browser. They are
handled differently depending on what type we use. Local storage is scoped to the user's
browser window. If the user reloads the page or even closes the web browser, the data will
still be saved.

The data is also shared across tabs. Session storage is scoped to the Browser tab, if
you reload the tab, the data will be saved, but if you close the tab, the data will be lost.
SessionsStorage is, in a way, safer to use because we avoid risks with bugs that may
occur due to multiple tabs manipulating the same values in storage.

To be able to access the browser storage, we need to use JavaScript. Luckily, we won't need
to write the code ourselves.

In .NET 5, Microsoft introduced Protected browser storage, which uses data protection
in ASP.NET core and is not available in WebAssembly. We can, however, use an open
source library called Blazored.LocalStorage, which can be used by both Blazor
Server and Blazor WebAssembly.

But, we are here to learn new things, right?

So let's implement an interface so that we can use both versions in our app depending on
which hosting model we are using.

Creating an interface
First, we need an interface that can read and write to storage:

1. In the MyBlog.Shared project, right-click on the project name and select Add|New
Folder. Name the folder Interfaces.

2. Select the new folder and create a new class by pressing Shift+ F2, and name the file
IBrowserStorage.cs.

3. Replace the content in the file with the following code:

using System.Threading.Tasks;

namespace MyBlog.Shared.Interfaces

{

 public interface IBrowserStorage

 {

 Task<T>GetAsync<T>(string key);

 Task SetAsync(string key,object value);

Implementing browser storage 227

 Task DeleteAsync(string key);

 }

}

Now we have an interface containing get, set, and delete methods.

Implementing Blazor Server
For Blazor Server, we will use protected browser storage:

1. Right-click on the MyBlogServerSide project and select Add|New folder. Name the
folder Services.

2. Select the folder and press Shift+ F2. Name the file
MyBlogProtectedBrowserStorage.cs.

(I realize the naming is overkill, but it will be easier to tell them apart because we
will soon create another one.)

3. Open the new file and add the following using statements:

using Microsoft.AspNetCore.Components.Server.
ProtectedBrowserStorage;

using MyBlog.Shared.Interfaces;

using System.Threading.Tasks;

4. Replace the class with this one:

 public class MyBlogProtectedBrowserStorage :

 IBrowserStorage

{

 ProtectedSessionStorage Storage { get; set; }

 public MyBlogProtectedBrowserStorage
 (ProtectedSessionStorage storage)

 {

 Storage = storage;

 }

 public async Task DeleteAsync(string key)

 {

 await Storage.DeleteAsync(key);

 }

 public async Task<T?> GetAsync<T>(string key)

228 Managing State

 {

 var value = await Storage.GetAsync<T>(key);

 if (value.Success)

 {

 return value.Value;

 }

 else

 {

 return default(T);

 }

 }

 public async Task SetAsync(string key, object value)

 {

 await Storage.SetAsync(key,value);

 }

}

The MyBlogProtectedBrowserStorage class implements the
IBrowserStorage interface for protected browser storage. We inject
a ProtectedSessionStorage instance and implement the set, get, and
delete methods.

5. In Startup.cs, add the following namespaces:

using MyBlog.Shared.Interfaces;

using MyBlogServerSide.Services;

6. Add the following at the bottom of the ConfigureServices method:

services.AddScoped<IBrowserStorage,MyBlogProtectedBrowser
Storage>();

7. Protected browser storage will use JavaScript to get the information, and as you
may recall from Chapter 10, JavaScript Interop, we can only do those calls from
OnAfterRenderAsync or OnAfterRender, but there is another way.

The reason for JavaScript not working in places other than the OnAfterRender
methods is the pre-rendering feature of Blazor Server.

Implementing browser storage 229

8. Open Pages/_host.chtml and change the render mode from <component
type="typeof(App)" render-mode="ServerPrerendered" /> to
<component type="typeof(App)" render-mode="Server" />.

This will make it possible for us to call JavaScript outside of the OnAfterRender
methods.

We are configuring Blazor to return an instance of
MyBlogProtectedBrowserStorage when we inject IBrowserStorage.

This is the same as we did with the API. We inject different implementations depending
on the platform.

Implementing WebAssembly
For Blazor WebAssembly, we will use Blazored.SessionStorage:

1. Right-click on the Dependencies node under the MyBlogWebAssembly.Client
project and select Manage Nuget Package.

2. Search for Blazored.SessionStorage and click Install.

3. Right-click on the MyBlogWebAssembly.Client project and select Add|New
Folder. Name the folder Services.

4. Select the new folder and press Shift+ F2. Name the file
MyBlogBrowserStorage.cs.

5. Open the new file and replace the content with the following code:

using MyBlog.Shared.Interfaces;

using System.Threading.Tasks;

using Blazored.SessionStorage;

namespace MyBlogWebAssembly.Client.Services

{

 public class MyBlogBrowserStorage :

 IBrowserStorage

 {

 ISessionStorageService Storage { get; set; }

 public MyBlogBrowserStorage
 (ISessionStorageService storage)

 {

 Storage = storage;

230 Managing State

 }

 public async Task DeleteAsync(string key)

 {

 await Storage.RemoveItemAsync(key);

 }

 public async Task<T> GetAsync<T>(string key)

 {

 return await Storage.GetItemAsync<T>(key);

 }

 public async Task SetAsync(string key, object
 value)

 {

 await Storage.SetItemAsync(key,value);

 }

 }

}

The implementation of ProtectedBrowserStorage and Blazored.
SessionStorage are pretty close to one another. The names of the methods are
different, but the parameters are the same.

6. In the Program.cs file, add the following namespaces:

using Blazored.SessionStorage;

using MyBlog.Shared.Interfaces;

using MyBlogWebAssembly.Client.Services;

7. Add the following code just above await builder.Build().RunAsync();:

builder.Services.AddBlazoredSessionStorage(options =>

 {

 options.JsonSerializerOptions.ReferenceHandler =
 System.Text.Json.Serialization.ReferenceHandler.
 Preserve;

 options.JsonSerializerOptions.
 PropertyNamingPolicy = null;

Implementing browser storage 231

 });

builder.Services.AddScoped<IBrowserStorage,
MyBlogBrowserStorage>();

The AddBlazoredSessionStorage extension method hooks up everything so that
we can start using the browser session storage. We also supply it with some configurations
to be able to serialize our data objects.

Then we add our configuration for IBrowserStorage, just as we did with the server,
but in this case, we return MyBlogBrowserStorage when we ask the dependency
injection for IBrowserStorage.

Implementing the shared
We also need to implement some code that calls the services we just created:

1. In the MyBlog.Shared project, open Pages/Admin/BlogPostEdit.razor.
We are going to make a couple of changes to the file.

2. Inject IBrowserStorage:

@inject MyBlog.Shared.Interfaces.IBrowserStorage storage

3. In the OnParameterSetAsync method, we load post if Id is not null.

Add an else clause to the if statement:
else

{

 var saved = await storage.GetAsync<BlogPost>
 ("EditCurrentPost");

 if (saved != null)

 {

 Post = saved;

 }

}

When we load a file and Id is null, this means we are editing a new file and then we
can check whether we have a file saved in browser storage.

This implementation can only have one file in the draft and only saves new posts.
If we were to edit an existing post, it will not save those changes. This part would
break if we didn't change the render mode to Server for Blazor Server.

232 Managing State

Here is more information on handling protected browser storage with prerender:
https://docs.microsoft.com/en-us/aspnet/core/blazor/
state-management?view=aspnetcore-5.0&pivots=server#handle-
prerendering.

4. We need our UpdateHTML method to become async. Change the method to look
like this:

protected async Task UpdateHTMLAsync()

{

 if (Post.Text != null)

 {

 markDownAsHTML = Markdig.Markdown.ToHtml
 (Post.Text, pipeline);

 if (Post.Id == 0)

 {

 await storage.SetAsync("EditCurrentPost",
 Post);

 }

 }

}

If Id on the blog post is 0 (zero), we will store the post in the browser storage. Make
sure to change all the references from UpdateHTML to UpdateHTMLAsync.

5. In the MyBlog.Data.Shared project in the Models/BlogPost.cs file,
instantiate the Tags collection like this:

public ICollection<Tag> Tags { get; set; } = new
Collection<Tag>();

We are done. Now it's time to test the implementation:

1. Right-click on MyBlogServerSide, select Set as Startup Project, and run the
project by pressing Ctrl+ F5.

2. Log in to the site (so we can access the admin tools).

3. Click Blog posts followed by New blog post.

https://docs.microsoft.com/en-us/aspnet/core/blazor/state-management?view=aspnetcore-5.0&pivots=server#handle-prerendering
https://docs.microsoft.com/en-us/aspnet/core/blazor/state-management?view=aspnetcore-5.0&pivots=server#handle-prerendering
https://docs.microsoft.com/en-us/aspnet/core/blazor/state-management?view=aspnetcore-5.0&pivots=server#handle-prerendering

Implementing browser storage 233

4. Type anything in the boxes, and as soon as we type something in the text area, it will
save the post to storage.

5. Click Blog posts (so we navigate away from our blog post).

6. Click New blog post and all the information will still be there.

7. Press F12 to see the browser developer tools. Click Application | Session storage |
https://localhost:5000.

You should see one post with the key EditCurrentPost, and the value of that
post should be an encrypted string, as seen in Figure 11.1:

Figure 11.1 – The encrypted protected browser storage

Let's test the Blazor WebAssembly next:

1. Right-click on MyBlogWebAssembly.Server, select Set as Startup Project, and run
the project by pressing Ctrl+ F5.

2. Log in to the site (so we can access the admin tools).

3. Click Blog posts and then New blog post.

4. Type anything in the boxes, and as soon as we type something in the text area, it will
save the post to storage.

5. Click Blog posts (so we navigate away from our blog post).

6. Click New blog post and all the information should still be there.

234 Managing State

7. Press F12 to see the browser developer tools. Click Application | Session storage |
https://localhost:5000.

You should see one post with the key EditCurrentPost, and the value of that
post should be a JSON string, as seen in Figure 11.2.

If we were to change the data in the storage, it would also change in the application,
so keep in mind that this is plain text, and the end user can manipulate the data:

Figure 11.2 – Browser storage that is unprotected

Now we have implemented protected browser storage for Blazor Server and session
storage for Blazor WebAssembly.

We only have one way left to go through, so let's make it the most fun.

Using an in-memory state container service
When it comes to in-memory state containers, we simply use dependency injection to
keep the instance of the service in memory for the predetermined time (scoped, singleton,
transient).

In Chapter 4, Understanding Basic Blazor Components, we discussed how the scope of
dependency injections differs from Blazor Server and Blazor WebAssembly. The big
difference for us in this section is the fact that BlazorWebAssembly runs inside the web
browser and doesn't have a connection to the server or other users.

To show how in-memory state works, we will do something that might seem like a bit of
overkill for a blog, but it will be kinda cool to see. When we edit our blog post, we will
make sure to update all the web browsers connected to our blog in real time (I did say
overkill).

Using an in-memory state container service 235

We will have to implement that a bit differently depending on hosting. Let's start with
Blazor Server.

Implementing real-time updates on Blazor Server
The implementation for Blazor Server can also be used for Blazor WebAssembly, but since
WebAssembly is running in our browser, it would only notify the users connected to the
site, which would be just you. But it might be good to know that the same way works in
Blazor Server as well as Blazor WebAssembly:

1. In the MyBlog.Shared project, select the Interfaces folder and press Shift +
F2. Name the file IBlogNotificationService.cs.

2. Add the following code:

using MyBlog.Data.Models;

using System;

using System.Threading.Tasks;

namespace MyBlog.Shared.Interfaces

{

 public interface IBlogNotificationService

 {

 Action<BlogPost>BlogPostChanged{ get; set; }

 Task SendNotification(BlogPost post);

 }

}

We have an action that we can subscribe to when the blog post is updated and a
method we can call when we update a post.

3. In the MyBlogServerSide project, select the Services folder and press Shift+
F2. Name the file BlazorServerBlogNotificationService.cs.

It might seem unnecessary to give the class a name that includes BlazorServer,
but it makes sure we can easily tell the classes apart.

Replace the content with the following code:
using MyBlog.Data.Models;

using MyBlog.Shared.Interfaces;

using System;

using System.Threading.Tasks;

namespace MyBlogServerSide.Services

236 Managing State

{

 public class BlazorServerBlogNotificationService :
 IBlogNotificationService

 {

 public Action<BlogPost>BlogPostChanged{ get;
 set; }

 public Task SendNotification(BlogPost post)

 {

 BlogPostChanged?.Invoke(post);

 return Task.CompletedTask;

 }

 }

}

The code is pretty simple here. If we call SendNotification, it will check
whether anyone is listening for the BlogPostChanged action and whether to
trigger the action.

4. In Startup.cs at the end of ConfigureServices, add the dependency
injection:

services.AddSingleton<IBlogNotificationService,
BlazorServerBlogNotificationService>();

Whenever we ask for an instance of the type IBlogNotificationService, we
will get back an instance of BlazorServerBlogNotificationService.

We add this dependency injection as a Singleton. I can't stress this enough. When
using Blazor Server, this will be the same instance for ALL users, so we must be
careful when we use Singleton.

In this case, we want the service to notify all the visitors of our blog that the blog
post has changed.

5. In the MyBlog.Shared project, open Post.razor.

6. Add the following code at the top (or close to the top) of the page:

@using MyBlog.Shared.Interfaces

@inject IBlogNotificationService notificationService

@implements IDisposable

Using an in-memory state container service 237

We add dependency injection for IBlogNotificationService and we also
need to implement IDisposable to avoid any memory leaks.

At the top of the OnInitializedAsync method, add the following:
notificationService.BlogPostChanged += PostChanged;

We added a listener to the event so we know when we should update the
information.

7. We also need the PostChanged method, so add this code:

private async void PostChanged(BlogPost post)

{

 if (BlogPost.Id == post.Id)

 {

 BlogPost = post;

 await InvokeAsync(()=>this.StateHasChanged());

 }

}

If the parameter has the same ID as the post we are currently viewing, then replace
the content with the post in the event and call StateHasChanged.

Since this is happening on another thread, we need to call StateHasChanged
using InvokeAsync so that it runs on the UI thread.

The last thing in this component is to stop listening to the updates by implementing
the Dispose method. Add the following:

void IDisposable.Dispose()

{

notificationService.BlogPostChanged -= PostChanged;

}

We simply remove the event listener.

8. Open the Pages/Admin/BlogPostEdit.Razor file.

9. When we make changes to our blog post, we need to send a notification as well. At
the top of the file, add the following:

@using MyBlog.Shared.Interfaces

@inject IBlogNotificationService notificationService

We add a namespace and inject our notification service.

238 Managing State

10. In the UpdateHTMLAsync method, add the following just under the Post.
Text!=null if statement:

await notificationService.SendNotification(Post);

Every time we change something, it will now send a notification that the blog post
changed. I do realize that it would make more sense to do this when we save a post,
but it makes for a much cooler demo.

11. Right-click on MyBlogServerSide, select Set as Startup Project, and run the
project by pressing Ctrl+ F5.

12. Copy the URL and open another web browser. We should now have two web
browser windows open showing us the blog.

In the first window, open a blog post (doesn't matter which one), and in the second
window, log in and edit the same blog post.

13. When we change the text of the blog post in the second window, the change should
be reflected in real time in the first window.

I am constantly amazed how a feature that would be a bit tricky to implement without
using Blazor only required 13 steps, and if we didn't prepare for the next step, it would
take even fewer steps.

Next, we will implement the same feature for Blazor WebAssembly, but Blazor
WebAssembly runs inside the user's web browser. There is no real-time communication
built in, as with Blazor Server.

Implementing real-time updates on Blazor
WebAssembly
We already have a lot of the things in place. We only need to add a real-time messaging
system and since SignalR is both easy to implement and is awesome, let's use that.

The first time I used SignalR, my first thought was, wait, it can't be that easy. I have
forgotten something or something is missing.

Let's see whether that still holds true today:

1. Right-click on the MyBlogWebAssembly.Server project, select Add new folder,
and name the folder Hubs.

2. Select the Hubs folder and press Shift+ F2. Name the file
BlogNotificationHub.cs.

Using an in-memory state container service 239

3. Replace the code with the following:

using System.Threading.Tasks;

using Microsoft.AspNetCore.SignalR;

using MyBlog.Data.Models;

namespace MyBlogWebAssembly.Server.Hubs

{

 public class BlogNotificationHub : Hub

 {

 public async Task SendNotification(BlogPost post)

 {

 await Clients.All.SendAsync
 ("BlogPostChanged", post);

 }

 }

}

The class inherits from the Hub class. There is a method called
SendNotification. Keep that name in mind; we will come back to that.

We call Clients.All.SendAsync, which means we will send a message called
BlogPostChanged with the content of a blog post.

The name BlogPostChanged is also important, so keep that in mind as well.

4. In the Startup.cs file at the top of the ConfigureService method, add
the following:

services.AddSignalR().AddJsonProtocol(options => {

options.PayloadSerializerOptions.ReferenceHandler =
ReferenceHandler.Preserve;

options.PayloadSerializerOptions.PropertyNamingPolicy =
null;

});

This adds SignalR and configures the JSON serialization to handle the entity
framework.

5. At the bottom of the method, add the following:

services.AddResponseCompression(opts =>

{

opts.MimeTypes = ResponseCompressionDefaults.MimeTypes.

240 Managing State

Concat(

new[] { "application/octet-stream" });

});

6. Add the following namespace:

using MyBlogWebAssembly.Server.Hubs;

7. In app.UseEndpoints, just above endpoints.
MapFallbackToFile("index.html");, add the following:

endpoints.MapHub<BlogNotificationHub>("/
BlogNotificationHub");

Here we configure what URL BlogNotificationHub should use. In this case,
we are using the same URL as the name of the hub.

The URL here is also important. We will use that in just a bit.

8. In the MyBlogWebAssembly.Client project, right-click on the Dependencies
node and select Manage NuGet Packages.

9. Search for Microsoft.AspNetCore.SignalR.Client and click
Install. Select the Services folder and press Shift+ F2. Name the file
BlazorWebAssemblyBlogNotificationService.cs.

In this file, we will implement the SignalR communication.

10. Add the following namespaces:

using Microsoft.AspNetCore.Components;

using Microsoft.AspNetCore.SignalR.Client;

using Microsoft.Extensions.DependencyInjection;

using MyBlog.Data.Models;

using MyBlog.Shared.Interfaces;

using System;

using System.Threading.Tasks;

11. Add this class:

 public class
 BlazorWebAssemblyBlogNotificationService:
 IBlogNotificationService, IAsyncDisposable

 {

 NavigationManager _navigationManager;

Using an in-memory state container service 241

 public BlazorWebAssemblyBlogNotificationService
 (NavigationManager navigationManager)

 {

 _navigationManager = navigationManager;

 _hubConnection = new
 HubConnectionBuilder().AddJsonProtocol

 (options => {

 options.PayloadSerializerOptions.
 ReferenceHandler = System.Text.Json.
 Serialization.ReferenceHandler.Preserve;

 options.PayloadSerializerOptions.
 PropertyNamingPolicy = null;

 })

 .WithUrl(navigationManager.ToAbsoluteUri
 ("/BlogNotificationHub"))

 .Build();

 _hubConnection.On<BlogPost>
 ("BlogPostChanged", (post) =>

 {

 BlogPostChanged?.Invoke(post);

 });

 _hubConnection.StartAsync();

 }

 private HubConnection _hubConnection;

 public Action<BlogPost> BlogPostChanged
 { get;set; }

 public async Task SendNotification(BlogPost post)

 {

 await _hubConnection.SendAsync
 ("SendNotification", post);

 }

 public async ValueTask DisposeAsync()

242 Managing State

 {

 await _hubConnection.DisposeAsync();

 }

 }

A lot is happening here. The class is implementing
IBlogNotificationService and IAsyncDisposable.

In the constructor, we use dependency injection to get NavigationManager, so
we can figure out the URL to the server.

Then we configure the connection to the hub. As with the server, we need to
configure the JSON serialization to handle the entity framework. Then we specify
the URL to the hub; this should be the same as we specified in step 7.

Now we can configure the hub connection to listen for events, in this case, we listen
for the BlogPostChanged event, the same name we specified in step 3. When
someone sends the event, the method we specify will run.

The method in this case simply triggers the event we have in
IBlogNotificationService. Then we start the connection. Since the
constructor can't be async, we won't await the StartAsync method.

IBlogNotificationService also implements the SendNotification
method, and we simply trigger the event with the same name on the hub, which will
result in the hub sending the BlogPostChanged event to all connected clients.

The last thing we do is to make sure that we dispose of the hub connection.

12. In the Program.cs file, we need to configure dependency injection. Just above
await builder.Build().RunAsync();, add the following:

builder.Services.AddSingleton<IBlogNotificationService,
BlazorWebAssemblyBlogNotificationService>();

13. Add the following namespace:

MyBlogWebAssembly.Client.Services;

14. Now it's time to carry out testing and we do that in the same way as for the Blazor
Server project.

Right-click on MyBlogWebAssembly.Server, select Set as Startup Project, and run
the project by pressing Ctrl+F5.

Summary 243

15. Copy the URL and open another web browser. We should now have two web
browser windows open showing us the blog.

In the first window, open a blog post (it doesn't matter which one), and in the
second window, log in and edit the same blog post.

16. When we change the text of the blog post in the second window, the change should
be reflected in real time in the first window.

In 16 steps, we have implemented real-time communication between server and client, a
Blazor WebAssembly client with .NET code running inside the web browser.

And no JavaScript!

Summary
In this chapter, we learned how we can handle state in our application and how we can use
local storage to store data, both encrypted and not. We looked at different ways of doing
that and we also made sure to include SignalR to be able to use real-time communication
with the server.

Almost all applications need to save data in some form. Perhaps it can be settings or
preferences. The things we covered in the chapter are the most common ones, but we
should also know that there are many open source projects we can use to persist state. We
could save the information using IndexDB.

In the next chapter, we will take a look at debugging. Hopefully, you won't have needed to
read that chapter beforehand.

In this section, you will see how to debug your application both using client-side and
server-side Blazor. We'll cover how to add tests and what to think about when it comes to
deploying your application.

This section includes the following chapters:

• Chapter 12, Debugging

• Chapter 13, Testing

• Chapter 14, Deploying to Production

• Chapter 15, Where to Go from Here

Section 3:
Debug, Test, and

Deploy

12
Debugging

In this chapter, we will take a look at debugging. The debugging experience of Blazor is a
good one, and hopefully, you haven't got stuck anywhere and had to jump to this chapter.

Debugging code is a really good way to solve bugs, understand the workflow, or simply
look at specific values. Blazor has three different ways to debug code, and we will take a
look at each one of those.

In this chapter we will cover the following:

• Making things break

• Debugging Blazor Server

• Debugging Blazor WebAssembly

• Debugging Blazor WebAssembly in the browser

• Hot reload (almost the real thing)

To debug something, we should first make something break!

Technical requirements
Make sure you have followed the previous chapters or use the Chapter11 folder as a
starting point.

248 Debugging

You can find the source code for this chapter's end result at https://github.
com/PacktPublishing/Web-Development-with-Blazor/tree/master/
Chapter12.

Note
If you are jumping into this chapter using the code from GitHub, make sure to
register the user with an email and follow the instructions for adding a user and
adding the Administrator role to the database. You can find the instructions in
Chapter 8, Authentication and Authorization.

Making things break
Edsger W. Dijkstra once said,

"If debugging is the process of removing software bugs, then programming
must be the process of putting them in."

This is definitely true in this section because we will add a page that will throw
an exception:

1. In the MyBlog.Shared project, select the Pages folder, and press Shift + F2.
Name the new file ThrowException.razor.

2. Replace the contents of the file with the following code block:

@page "/ThrowException"

<button @onclick="@(()=> {throw new Exception("Something
is broken"); })">Throw an exception</button>

This page simply shows a button and when you press the button, it will throw an
exception.

Great! We have our application's Ivan Drago (he wants to break you, but we might
just beat him with some fancy debugging).

The next step is to take a look at Blazor Server debugging.

Debugging Blazor Server
If you have debugged any type of .NET application in the past, you will feel right at home.
If you haven't, don't worry – we will go through it. Debugging Blazor Server is just as we
might expect and is the best debugging experience of the three different types we
will cover.

https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter12
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter12
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter12

Debugging Blazor Server 249

I usually keep my Razor pages in a shared library and while building my project, I use
Blazor Server for two reasons – first, it's a bit faster to run the project, and second, the
debugging experience is better.

Let's give it a try!

1. Right-click on MyBlogServerSide and click Set As Startup project.

2. Press F5 to start the project (this time with debugging).

3. Using the web browser, navigate to https://localhost:5001/
throwexception (the port number may vary).

4. Press F12 to show the web browser developer tools.

5. In the developer tools, click Console.

6. Click the Throw exception button on our page.

At this point, Visual Studio should request focus and it should show the exception
as shown in Figure 12.1:

Figure 12.1 – Exception in Visual Studio

7. Press F5 to continue and switch back to the web browser. We should now be able to
see the exception message in the developer tools as shown in Figure 12.2:

Figure 12.2 – Exception in the web browser

As we can see in Figure 12.1 and Figure 12.2, we get the exception both in Visual Studio
while debugging and also in the developer tools.

250 Debugging

This makes it quite easy to find the problem if there is an exception in an app in
production (perish the thought) – that feature has saved us many times.

Now let's try a breakpoint:

1. In Visual Studio, open MyBlog.Shared/Pages/Index.razor.

2. Anywhere in the LoadPosts method, set a breakpoint by clicking the leftmost
border (making a red dot appear). We can also add a breakpoint by pressing F9.

3. Go back to the web browser and navigate to https://localhost:5001/ (the
port number may vary).

Visual Studio should now hit the breakpoint and by hovering over variables, we should be
able to see the current values.

Both breakpoints and exception debugging work as we might expect. Next, we will take a
look at debugging Blazor WebAssembly.

Debugging Blazor WebAssembly
Blazor WebAssembly can of course be debugged as well, but there are some things we
need to think about. Since we have our exception page in our shared library, we can go
straight into debugging.

But let's start with breakpoints:

1. Right-click on MyBlogWebAssembly.Server and select Set as Startup Project.

2. Press F5 to debug the project.

Here we can notice the first difference – assuming we still have the breakpoint we set in
the Debugging Blazor Server section (in the LoadPosts method), the breakpoint did not
get hit.

Breakpoints won't get hit on the initial page load in Blazor WebAssembly. We need to
navigate to another page and back to the index page again for it to hit.

We can't just change the URL, as we could in Blazor Server, simply because that will reload
the app again and not trigger the breakpoint because it was an initial page load.

Debugging Blazor WebAssembly is made possible by the following line of code in the
launchsetting.json file:

"inspectUri": "{wsProtocol}://{url.hostname}:{url.port}/_
framework/debug/ws-proxy?browser={browserInspectUri}"

Debugging Blazor WebAssembly 251

But it is supplied for us when we create the project, so we don't need to add that manually.

We can also put breakpoints in our MyBlogWebAssembly.Server server project if we
want to and they will get hit just as we would expect.

Now let's see what happens with our exception:

1. In the web browser, navigate to https://localhost:5001/
throwexception.

2. Click the Throw exception button.

3. The unhandled exception won't get hit in Visual Studio. We get the exception in the
developer tools in the web browser as shown in Figure 12.3:

Figure 12.3 – WebAssembly error

252 Debugging

The debugging experience in Blazor WebAssembly is simply not as polished as with Blazor
Server but it is polished enough to be able to get the job done.

We have one method left to explore – debugging in the web browser.

Debugging Blazor WebAssembly in
the web browser
The first debugging experience for Blazor WebAssembly was the ability to debug right in
the web browser:

1. In Visual Studio, start the project by pressing Ctrl + F5 (run without debugging).

2. In the web browser, press Shift + Alt + D.

We will get an error message with instructions on how to start the web browser in
debug mode.

I am running Edge, so the way to start Edge would be something like this:
msedge --remote-debugging-port=9222 --user-data-dir="C:\
Users\Jimmy\AppData\Local\Temp\blazor-edge-debug"
--no-first-run https://localhost:5001/

Copy the command.

3. Press Win + R and paste the command.

4. A new instance of Chrome or Edge will open. In this new instance, press
Shift + Alt + D.

5. We should now see a source tab containing C# code from our project. From here,
we can put breakpoints that will be hit, and we can hover over variables.

Hot reload (almost the real thing) 253

The debug UI can be seen in Figure 12.4:

Figure 12.4 – Screenshot of the in-browser debug

Debugging C# code in the browser is pretty amazing, but since we have been debugging
directly in Visual Studio, I personally don't see much use for this kind of debugging.

Next, we will take a look at something that might not fall under debugging but is really
useful while developing Blazor apps.

Hot reload (almost the real thing)
With .NET 5, we got the ability to reload our Blazor site when we make changes to a code
file. Users have asked for hot reload and Microsoft is aiming to release hot reload in the
.NET 6 timeframe.

254 Debugging

To set this up, do the following:

1. In Visual Studio, select the Tools menu and then Options.

2. Select Projects and Solutions and then ASP.NET Core.

3. In the right box under the General heading, change the value of the Auto build and
refresh option to Auto build and refresh browser after saving the changes.

4. Right-click on MyBlogServerSide and select Set as Startup project.

5. Now run the project by pressing Ctrl + F5 (it only works without debugging).

6. In the web browser, bring up the counter page by adding /counter to the URL.

7. Make a change to the Pages/Counter.razor file and click Save.

Our web browser should now reload, and the change will be shown.
This also works from the command line by running the following command:

dotnet watch run

There are a couple of limitations to this method though:

• It doesn't work with Blazor WebAssembly running an ASP.NET server backend (as
we have in our project). For this to work, we need to manually reload the browser.

• The state of the application will restart.

• Changes in a shared project won't be reflected.

So, for our setup, this feature isn't very beneficial, but it is really good if our project doesn't
fall into any of the previously mentioned limitations.

Summary
In this chapter, we looked at different ways to debug our Blazor application. There will
always be moments where we need to step through the code, either to find a bug or to see
what is happening. When these moments are upon us, Visual Studio delivers world-class
functionality to help us achieve our goals.

The nice thing is that debugging Blazor applications, whether it's Blazor Server or Blazor
WebAssembly, will work as you would expect from a Microsoft product. We get C# errors
that are (in most cases) easy to understand and to solve.

In the next chapter, we will take a look at testing our Blazor components.

13
Testing

In this chapter, we will take a look at testing. Writing tests for our projects will help us
develop things rapidly.

We can run the tests and make sure we haven't broken anything with the latest change,
and also we don't have to invest our own time in testing the components since it is all
done by the tests. Testing will increase the quality of the product since we know that
things that worked earlier still function as they should.

But writing tests for UI elements isn't always as easy; the most common way is to spin up
the site and use tools that click on buttons and then read the output to determine whether
things work or not. The upside of this method is that we can test our site on different
browsers and devices. The downside is that it usually takes a lot of time to do these tests.
We need to spin up the web, start a web browser, verify the test, close the web browser,
and repeat for the next test.

We can use this method in Blazor as well (as with any ASP.NET site) but with Blazor, we
have other opportunities when it comes to testing.

Steve Sanderson created an embryo of a test framework for Blazor that Microsoft MVP
Egil Hansen picked up and continued the development of.

Egil's framework is called bUnit and has become an industry standard in the Blazor
community for testing Blazor components.

256 Testing

This chapter covers the following topics:

• What is bUnit?

• Setting up a test project

• Mocking the API

• Writing tests

Technical requirements
Make sure you have followed the previous chapters or use the Chapter12 folder as a
starting point.

You can find the source code for this chapter's end result at https://github.
com/PacktPublishing/Web-Development-with-Blazor/tree/master/
Chapter13.

Note
If you are jumping into this chapter using the code from GitHub, make sure to
register the user with an email and follow the instructions for adding a user and
adding the Administrator role to the database. You can find the instructions in
Chapter 8, Authentication and Authorization.

What is bUnit?
As mentioned in the introduction, some tests spin up web browsers to test the pages/
components, but bUnit takes another approach.

bUnit is made specifically for Blazor. It can define and set up tests using C# or Razor
syntax. It can mock JavaScript interop as well as Blazor's authentication and authorization.
To make our components more testable, sometimes we need to think about these things
from the beginning or make minor changes to our code.

bUnit doesn't rely on a web browser but renders the output internally and exposes it to us
so that we may test against predefined outputs.

It's time we get our hands dirty, so let's create a test project.

https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter13
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter13
https://github.com/PacktPublishing/Web-Development-with-Blazor/tree/master/Chapter13

Setting up a test project 257

Setting up a test project
To be able to do tests, we need a test project:

1. To install the bUnit templates, open PowerShell and run the following command:

dotnet new --install bunit.template

2. Make sure to check which is the current latest version of the templates on the bUnit
web page: https://bunit.egilhansen.com/.

3. In Visual Studio, right-click MyBlogSolution and choose Add | New Project.

4. Search for bUnit and select bUnit Test Project in the results, and then click Next.
Sometimes it takes time to find a template. We can also change the project type
dropdown to bUnit to find the template. We might need to reboot Visual Studio to
find it.

5. Name the project MyBlog.Shared.Tests, leave the location as is, and
click Next.

6. Select .NET 5 in the dropdown.

Great! We now have a test project.

Before we go into mocking the API, let's take a look at the different methods available to
us so we can get a feel for how bUnit works.

In MyBlog.Shared.Tests, we should have the following three files:

• _Imports.razor contains the namespaces that we want all of our Razor files to
have access to.

• Counter.razor is a copy of the same Counter components that we get by
default in the Blazor template.

• CounterCSharpTest.cs contains tests written in C#.

Let's start with the CounterCSharpTest.cs file, which contains two tests: one that
checks that the counter starts at 0 and one that clicks the button and verifies the counter is
now 1. These two simple tests make sense for testing the Counter component.

The CounterStartsAtZero test looks like this:

[Fact]

public void CounterStartsAtZero()

{

https://bunit.egilhansen.com/

258 Testing

 // Arrange

 var cut = RenderComponent<Counter>();

 // Assert that content of the paragraph shows counter

 // at zero

 cut.Find("p").MarkupMatches("<p>Current count: 0</p>");

}

Let's break this down. The Fact attribute tells the test runner that this is a normal test
that takes no parameters. We can also use the Theory attribute to tell the test runner that
the test method needs parameter values, but for this use case, we don't need parameters.

First, we arrange the test. Simply put, we set up everything we need to do the test. Egil
uses cut as the name of the component, which stands for component under testing.

We run the RenderComponent method and pass in the component type, which is the
Counter component in this case. Next, we assert whether the component outputs the
correct thing or not. We use the Find method to find the first paragraph tag and then
verify that the HTML looks like <p>Current count: 0</p>.

The second test is a bit more advanced and it looks like this:

[Fact]

public void ClickingButtonIncrementsCounter()

{

 // Arrange

 var cut = RenderComponent<Counter>();

 // Act - click button to increment counter

 cut.Find("button").Click();

 // Assert that the counter was incremented

 cut.Find("p").MarkupMatches("<p>Current count: 1</p>");

}

Just as with the previous test, we start with arranging by rendering our Counter
component. The next step is acting where we click the button. We look for the button and
then click the button in our counter component. There is only one button so in this
case, it's safe to look for the button this way.

Then it's time to assert again, and there we check the markup in the same way as the
previous test but we look for 1 instead of 0.

Mocking the API 259

Now let's run the tests and see whether they pass:

1. In Visual Studio, bring up Test Explorer by searching for it using Ctrl + Q. We can
also find it in View | Test Explorer.

2. Press Run all test in the view. Test Explorer should look like Figure 13.1:

Figure 13.1 – Visual Studio Test Explorer

Wonderful, now we have our first test running and hopefully passing.

Next, we will take a look at mocking the API.

Mocking the API
There are different ways to test our application. Testing the API is outside the scope of
this book but we still need to test the components and the components are dependent on
the API. We could spin up the API and test against the API, but in this case, we are only
interested in testing the Blazor component.

We can then mock the API or create a fake copy of the API that doesn't read from the
database but reads from a predefined dataset. This way, we always know what the output
should be.

Luckily, the interface we created for our API is just what we need to create a mock API.

We won't implement 100% of the tests for the project so we don't have to mock all the
methods. Please feel free at the end of the chapter to implement tests for all the methods
as an exercise.

260 Testing

There are two ways we can implement the mock API. We could spin up an in-memory
database, but to keep things simple, we will choose the other option and generate posts
when we ask for them:

1. Under MyBlog.Shared.Tests, right-click on the Dependencies node and select
Add Project References.

2. Check MyBlog.Shared and click Ok. Now our test project has access to all the
classes in our shared project as well as all the classes the shared project is referring
to, such as Interfaces in the MyBlog.Data.Shared project.

3. Select the MyBlog.Shared.Tests project. Press Shift + F2 to create a new file and
name the file MyBlogApiMock.cs.

4. Add the following namespaces:

using MyBlog.Data.Interfaces;

using MyBlog.Data.Models;

5. Implement the IMyBlogApi interface; the class should look like this:

public class MyBlogApiMock :IMyBlogApi

{

}

Now we will implement each of the methods so we can get data.

6. For BlogPost, add the following code in the class:

public async Task<BlogPost>GetBlogPostAsync(int id)

{

BlogPost post=new()

 {

 Id = id,

 Text = $"This is a blog post no {id}",

 Title = $"Blogpost {id}",

 PublishDate = DateTime.Now,

 Category = await GetCategoryAsync(1),

 };

 post.Tags.Add(await GetTagAsync(1));

 post.Tags.Add(await GetTagAsync(2));

 return post;

}

Mocking the API 261

public Task<int>GetBlogPostCountAsync()

{

 return Task.FromResult(10);

}

public async Task<List<BlogPost>>GetBlogPostsAsync(int
numberofposts, int startindex)

{

 List<BlogPost> list = new();

 for (int a = 0; a <numberofposts; a++)

 {

 list.Add(await GetBlogPostAsync(startindex +
 a));

 }

 return list;

}

When we get a blog post, we simply create one and fill it with predefined
information that we can later use in our tests. The same thing goes for getting a list
of blog posts.

We also say that we have a total of 10 blog posts in the database.

For categories, add the following code:
public async Task<List<Category>>GetCategoriesAsync()

{

 List<Category> list = new();

 for (int a = 0; a < 10; a++)

 {

 list.Add(await GetCategoryAsync(a));

 }

 return list;

}

public Task<Category>GetCategoryAsync(int id)

{

 return Task.FromResult(new Category() { Id = id,
 Name = $"Category {id}" });

}

262 Testing

Here we do the same thing: we create categories named Category followed by
a number.

7. The same thing goes for tags; add the following code:

public Task<Tag>GetTagAsync(int id)

{

 return Task.FromResult(new Tag() { Id = id, Name =
 $"Tag {id}" });

}

public async Task<List<Tag>>GetTagsAsync()

{

 List<Tag> list = new();

 for (int a = 0; a < 10; a++)

 {

 list.Add(await GetTagAsync(a));

 }

 return list;

}

We will not add tests for other methods in the API. We do need to add them to the
mock class to fulfill the interface. Add the following methods:

public Task<BlogPost>SaveBlogPostAsync(BlogPost item)

{

 return Task.FromResult(item);

}

public Task<Category>SaveCategoryAsync(Category item)

{

 return Task.FromResult(item);

}

public Task<Tag>SaveTagAsync(Tag item)

{

 return Task.FromResult(item);

}

public Task DeleteBlogPostAsync(BlogPost item)

{

 return Task.CompletedTask;

}

Writing tests 263

public Task DeleteCategoryAsync(Category item)

{

 return Task.CompletedTask;

}

public Task DeleteTagAsync(Tag item)

{

 return Task.CompletedTask;

}

We now have a mock API that does the same thing over and over again so we can make
reliable tests.

Writing tests
Time to write some tests. As I mentioned earlier in the chapter, we won't create tests for
the entire site; we will leave that to you to finish later if you want to. This is just to get a feel
for how to write tests:

1. Right-click and select MyBlog.Shared.Tests, then select Add | New folder. Name
the folder Pages.

This is just so we can keep a bit of a structure (the same folder structure as the
project we are testing).

2. Select the Pages folder. Press Shift + F2 to create a new Razor component and
name the file IndexTest.cs. Just remember not to name it the same as the
component we are testing; otherwise, it will be hard to make sure we are testing the
right one.

3. Open IndexTest.cs and add the bUnit namespace:

using Bunit;

using Microsoft.Extensions.DependencyInjection;

using MyBlog.Data.Interfaces;

using Xunit;

4. Inherit from TestContext by adding the following code:

 public class IndexTest: TestContext

 {

 }

264 Testing

5. Now we will add the test. Add the following code:

[Fact(DisplayName ="Shows 10 blog posts")]

public void Shows10Blogposts()

{

 var cut = RenderComponent
 <MyBlog.Shared.Pages.Index>();

 Assert.Equal(10,cut.FindAll("article").Count());

}

We give our test a display name so we understand what it does. The test is pretty
simplistic; we know we have 10 blog posts coming from the mock API. We also
know that each blog post is rendered within an article tag. We find all article
tags and make sure we have 10 of them in total.

Since we are using injection, we need to configure the dependency injection and
this is something we can do in the constructor.

6. We need to add the IndexTest method:

public IndexTest()

{

 Services.AddScoped<IMyBlogApi, MyBlogApiMock>();

}

This method will run when the class is created and here we declare that if the
components ask for an instance of IMyBlogApi, it will return an instance of our
mock API.

This works the same way as with Blazor Server, where we return an API that talks
directly to the database, and with Blazor WebAssembly, where we return an instance
of the API that talks to a web API.

In this case, it will return our mock API that returns data that is easy to test with.
Now we need to write the actual test.

7. In Visual Studio, bring up Test Explorer by searching for it using Ctrl + Q. We can
also find it in View | Test Explorer.

Writing tests 265

Run our tests to see whether we get a green light, as shown in Figure 13.2:

Figure 13.2 – Test Explorer with IndexTest

Now we have a test that tests the first post and the tenth post. It's an OK assumption to
make that the posts in between are rendered as expected, given the test data we have, but
it is, of course, possible to take the testing even further.

bUnit is a great framework for testing and the fact that it is written specifically for Blazor
so that it takes advantage of Blazor's powers makes it amazing to work with.

Now we have a simplistic test testing our blog, but bUnit has support for more advanced
features as well, such as authentication, for example.

Authentication
Using bUnit, we can test authentication and authorization.

It is, however, not the components themselves that are doing the authentication. It's
AuthorizeRouteView that we added to app.razor in Chapter 8, Authentication and
Authorization, so testing that in individual components won't make a difference.

But we can use AuthorizeView, for example, in our components like this:

<AuthorizeView>

 <Authorized>

 Authorized

 </Authorized>

 <NotAuthorized>

 Not Authorized

266 Testing

 </NotAuthorized>

</AuthorizeView>

We can use the AddTestAuthorization method to authorize our tests like this:

[Fact(DisplayName = "Shows not authorized")]

public void ShowsNotAuthorized()

{

 var authContext = this.AddTestAuthorization();

 var cut = RenderComponent
 <MyBlog.Shared.Pages.AuthorizedOrNot>();

 var content = cut.Find("strong").TextContent;

 Assert.Equal("Not Authorized", content);

}

This method adds TestAuthorization but is not authorized. The page will then
display the text "Not Authorized". To test when the user is authorized, we just set the user
as authorized:

[Fact(DisplayName = "Shows authorized")]

public void ShowsAuthorized()

{

 var authContext = this.AddTestAuthorization();

 authContext.SetAuthorized("Testuser",
 AuthorizationState.Authorized);

 var cut = RenderComponent
 <MyBlog.Shared.Pages.AuthorizedOrNot>();

 var content = cut.Find("strong").TextContent;

 Assert.Equal("Authorized", content);

}

We can add claims, roles, and much more. The user we utilize for testing has no
correlation with the users or roles in the database; the authorization is mocked by bUnit.

Authentication and authorization could be tricky to test, but using bUnit, it is really
simple. Something a bit harder to do is testing JavaScript, but bUnit has great support for
that as well.

Writing tests 267

Testing JavaScript
Testing JavaScript is not supported by bUnit, which is understandable. We can, however,
test the interop ourselves.

In this book, we have used the new .NET 5 syntax for our JavaScript. In our MyBlog.
Shared\Components\ItemList.razor component, we make a JavaScript interop
to confirm the deletion of an item.

The JavaScript call looks like this:

jsmodule = await jsRuntime.InvokeAsync<IJSObjectReference>
("import", "/_content/MyBlog.Shared/ItemList.razor.js");

return await jsmodule.InvokeAsync<bool>("showConfirm", "Are you
sure?");

We make sure that we load the JavaScript module and then execute the showConfirm
method.

JavaScript testing in bUnit can be done in two different modes – strict and loose. The
default value is strict, which means we need to specify every module and
every method.

If we choose loose, all methods will just return the default value. For a Boolean, it would
return false, for example.

To test the preceding JavaScript call, we can add the following code:

 var moduleInterop = fixture.JSInterop.SetupModule
 ("/_content/MyBlog.Shared/ItemList.razor.js");

 var showconfirm = moduleInterop.Setup<bool>
 ("showConfirm", "Are you sure?").SetResult(true);

We set up a module with the same path to the JavaScript as before, then we specify the
method and any in parameters.

Lastly, we specify what the result should be. In this case, we return true, which would be
the result of the JavaScript if we want to delete the item.

Great job! We now have tests in our project. Even though we aren't covering all the
components, we should have all the building blocks to complete the tests.

268 Testing

Summary
In this chapter, we looked at testing our application. We looked at how we can mock an
API to make reliable tests. We also covered how to test JavaScript interop as well
as authentication.

Tests can speed up our development and, most importantly, the quality of what we build.
With bUnit combined with dependency injection, it is easy to build tests that can help us
test our components.

Since we can test every component by itself, we don't have to log in, navigate to a specific
place in our site, and then test the entire page as many other testing frameworks would
have us do.

Now we have our site, containing reusable components, authentication, APIs, both
Blazor Server and WebAssembly, authentication, shared code, JavaScript interop, state
management, and tests. We only have one more thing to do: ship it!

In the next chapter, Chapter 14, Deploying to Production, it's time to ship.

14
Deploy to

Production
In this chapter, we will take a look at the different options we have when deploying our
Blazor application to production. Since there are many different options, going through
them all would be a book all by itself.

We won't go into detail but rather cover the different things we need to think about so that
we can deploy to any provider.

In the end, deploying is what we need to do to make use of what we build.

In this chapter, we will cover the following:

• Continuous delivery options

• Deploying the database

• Hosting options

Technical requirements
This chapter is about general deployment so we won't need any code.

270 Deploy to Production

Continuous delivery options
When deploying anything to production, we should think about making sure to remove
uncertain factors. For example, if we are deploying from our own machine, how do we
know that it's the latest version? How do we know that our teammates didn't recently
solve a problem and we don't have the fix in our branch? To be honest, how do we even
know that the version in source control is the same in production? Or if the version in
production even exists in source control?

This is where Continuous Integration and Continuous Delivery/Deployment (CI/CD)
come into the picture. We simply make sure that something else makes the deployment to
production. Deployment is a book in itself so we won't go that deep into the subject.

GitHub Actions and Azure DevOps (or Azure Pipelines) are two ways from Microsoft to
do CI/CD. There are many more, such as Jenkins, TeamCity, and GitLab – the list is long.
If the CI/CD system we are currently using supports deploying ASP.NET, it is going to be
able to handle Blazor because, in the end, Blazor is just an ASP.NET site.

If we have tests (which we should have), we should also make sure to set up tests as part
of our CI/CD pipeline. The nice thing is that we don't need to add any specific hardware
to test our components; it is going to work if our CI/CS pipeline can run unit tests (nUnit,
xUnit).

In our setup at work, we build and run all tests when we do a pull request. If the build and
tests pass, someone else in the team does a code review and approves the change. If the
team member approves the change, it will then trigger a release and the release deploys
the site to our test environment. Our testers run through the test protocols and approve
the changes.

When the sprint is over, the tester will run through the complete test protocol and approve
the site. We then trigger another release that will deploy the site to production.

Since Blazor is ASP.NET, nothing is stopping us from going even further with the
automated testing of our site.

Deploying the database
When it comes to deploying our database, Entity Framework does a lot for us. We could
let Entity Framework apply the migrations if needed, but I am a bit of a control freak.

Entity Framework creates code for both applying and removing the change, so it should
be pretty safe to let it do its thing. There is another option, and that is letting Entity
Framework generate SQL scripts that we can apply ourselves.

Hosting options 271

By adding the script flag, we will get a SQL script we can run against our database:

dotnet ef migrations script 20180904195021_InitialCreate

There are many different databases we can use, such as Microsoft SQL, MySQL, and, as we
used in this book, SQLite.

We could also go for a non-relational type of database. Blazor supports it all, so whatever
is right for the project is what we should use.

Hosting options
When it comes to hosting Blazor, there are many options. Any cloud service that can host
ASP.NET Core sites should be able to run Blazor without any problems.

There are some things we need to think about, so let's go through the options one by one.

Hosting Blazor Server
If the cloud provider has an option to enable/disable WebSockets, we want to enable them
since that's the protocol used by SignalR. Depending on the load, we might want to use
a service such as Azure SignalR Service, which will take care of all the connections and
enable our application to handle more users.

In some cases, the cloud provider may support .NET Core 3.x but not support .NET
5 out of the box. But don't worry; by making sure to publish our application with the
deployment mode as self-contained, we make sure the deployment also adds any files
necessary to run the project (this might not be true for all hosting providers).

This is also a good thing to do to make sure that we are running on the exact framework
version we expect.

Hosting Blazor WebAssembly
If we are using a .NET Core backend (like we do for the blog), we are hosting a .NET Core
website, so the same rules apply as with hosting Blazor Server. For our blog, we also added
SignalR, so we need WebSockets enabled as well.

There are some other considerations when it comes to hosting Blazor WebAssembly, such
as these:

• We may need a .NET Core backend.

• The data we are getting may be static or hosted somewhere else.

272 Deploy to Production

In either of these cases, we can host our application in Azure Static Websites or even
GitHub Pages.

Our blog uses Identity Server (which is also the default implementation for Blazor
WebAssembly authentication), which runs with a developer certificate when we run it
during development. If we want to deploy a site using Identity Server into production, we
also need to create a certificate.

We are not going to get into how to do that or how to set it up in this book, but it is worth
mentioning it so we know what to look for.

Hosting on IIS
We can also host our application on Internet Information Server (IIS). Install the hosting
bundle and it will also make sure to include the ASP.NET Core IIS module if installed on a
machine with IIS.

Make sure to enable the WebSocket protocol on the server.

We currently run our sites on IIS and use Azure DevOps to deploy our sites. Since we are
using Blazor Server, the downtime is very evident. As soon as the web loses the SignalR
connection, the site will show a reconnect message.

For the sites we are using, it is about 8 to 10 seconds of downtime when deploying a new
version, which is pretty quick.

Summary
In this chapter, we talked about why we should use CI/CD since it makes a huge difference
to ensure the quality of the application. We looked at some of the things we need to do to
run our Blazor app on any cloud provider supporting .NET 5.

Deploying is perhaps the most important step when it comes to an application. Without
deploying our application, it's just code. With the things we mentioned in this chapter,
such as CI/CD, hosting, and deployment, we are now ready to deploy the code.

In the next chapter, we will take a look at where we go from here.

15
Where to Go

from Here
The book is coming to an end and I want to leave you with some of the things we have
encountered from running Blazor in production ever since Blazor was in preview. We will
also talk about where to go from here.

In this chapter, we will cover the following topics:

• Learnings from running Blazor in production

• Next steps

Technical requirements
In this chapter, we are not using the code that we have written throughout the book.

Learnings from running Blazor in production
Ever since Blazor was in preview, we have been running Blazor Server in production. In
most cases, everything has run without issues. Occasionally, we encounter a few problems
and I will share those learnings with you in this section.

274 Where to Go from Here

We will look at the following:

• Solving memory problems

• Solving concurrency problems

• Solving errors

• Old browsers

These are some of the things we ran into, and we have solved them all in a way that works
for us.

Solving memory problems
Our latest upgrade did add a lot of users and with that, a bigger load on the server. The
server manages memory quite well, but with this release, the backend system was a bit
slow, so users ended up pressing F5 to reload the page. What happens then is that the
circuit disconnects and a new circuit gets created. The old circuit waits for the user to
perhaps connect to the server again for 3 minutes (by default).

The user now has a new circuit and will never connect to the old one again, but for 3
minutes, the user's state will still take up memory. For most applications, this is probably
not a problem, but we are loading a lot of data into memory; the data, the render tree, and
all the things surrounding that will be kept in memory.

So, what can we learn from that? Blazor is a single-page application. Reloading the page
is like restarting an app, which means we should always make sure to add a possibility to
update the data from within the page (if that makes sense for the application). We could
also make sure to update the data as it changes, as we did in Chapter 11, Managing State.

In our case, we ended up adding more memory to the server and then made sure there
were reload buttons in the UI that refresh the data without reloading the whole page. The
ultimate goal is to add real-time updates that continuously update the UI when the
data changes.

If adding more memory to the server isn't an option, we can try to change the garbage
collection from Server to Desktop. The .NET garbage collection has two modes:

• Workstation mode is optimized for running on a workstation that typically doesn't
have a lot of memory. It runs the garbage collection multiple times per second.

• Server mode is optimized for servers where there is usually lots of memory
and it prioritizes speed, which means it will only run the garbage collector
every 2 seconds.

Learnings from running Blazor in production 275

The mode of the garbage collector can be set in the project file or the runtimeconfig.
json file by changing the ServerGarbageCollection node:

<PropertyGroup>

<ServerGarbageCollection>true</ServerGarbageCollection>

</PropertyGroup>

Adding more memory is probably a better idea though.

Something else we have noticed is the importance of disposing of our database contexts.
In this book, we have used IDbContextFactory to create an instance of the data
context, and after we are done disposing of it, by using the Using keyword.

By using this method, it will only be available for a short time and then disposed of,
freeing up memory fast.

Solving concurrency problems
We often ran into problems where the data context was already in use and couldn't access
the database from two different threads.

This is something that is solved by using IDbContextFactory and disposing of the
data context when we are finished using it.

In a non-Blazor site, having multiple components to load at the same time is never a
problem (because the web is doing one thing at a time), so the fact that Blazor can do
multiple things at the same time is something we need to think about when we design
our architecture.

Solving errors
Blazor usually gives us an error that is easy to understand, but in some rare cases, we do
run into problems that are hard to figure out. We can add detailed errors to our circuit (for
Blazor Server) by adding the following option in Startup.cs:

services.AddServerSideBlazor().AddCircuitOptions(options => {
options.DetailedErrors = true; });

By doing so, we will get more detailed errors. I don't recommend using detailed errors
in a production scenario, however. With that said, we have the setting turned on for an
internal app in production because the internal users are briefed on it and understand
how to handle it. It makes it easier for us to help our users and the error message is only
visible in the developer tools of the web browser, and not in the face of the user.

276 Where to Go from Here

Old browsers
Some of our customers were running old browsers on old systems, and even though
Blazor supports all major browsers, that support doesn't include really old browsers.
We ended up helping those customers upgrade to Edge or Chrome simply because we
didn't think they should be browsing the web using browsers that no longer receive
security patches.

Even our TV at home can run Blazor WebAssembly, so old browsers are probably not a
big problem, but it can be worth thinking about when it comes to browser support. What
browsers do we need/want to support?

Next steps
At this point, we know the difference between Blazor Server and Blazor WebAssembly. We
know how to create reusable components, make APIs, manage state, and much more. But
where do we go from here; what are the next steps?

The community
The Blazor community is not as big as other frameworks, but it is growing fast. Many
people share content with the community in the form of blogs or videos. YouTube and
PluralSight have a lot of tutorials and courses. Twitch has a growing amount of Blazor
content, but it is not always easy to find in the vast catalog of content.

There are a couple of resources worth mentioning:

• My blog: My blog has a lot of Blazor content and more to come (http://
engstromjimmy.se/).

• Blazm: The Blazm component library that we have written can be found here
(http://blazm.net/).

• Coding after Work: We have many episodes of our podcast and our stream
covering Blazor.

Coding after Work Podcast: http://codingafterwork.com/.

Twitch: https://www.twitch.tv/CodingAfterWork.

http://engstromjimmy.se/
http://engstromjimmy.se/
http://blazm.net/
http://codingafterwork.com/
https://www.twitch.tv/CodingAfterWork

Next steps 277

• Awesome-Blazor: A huge list of Blazor-related links and resources can be found
here (https://github.com/AdrienTorris/awesome-blazor).

• Jeff Fritz: Jeff Fritz shares Blazor knowledge (among other things) on Twitch. He
also maintains a Blazor library that helps Web Forms developers to adopt Blazor.

Twitch: https://www.twitch.tv/csharpfritz

GitHub: https://github.com/FritzAndFriends/
BlazorWebFormsComponents

The components
Most third-party component vendors such as Progress Telerik, DevExpress, Syncfusion,
Radzen, ComponentOne, and many more have invested in Blazor. Some cost money,
some are free. There are also a lot of open source component libraries that we can use.

This question comes up a lot: I am new to Blazor. What third-party vendor should I use?
My recommendation is to try to figure out what we need before investing in a library
(money and/or time).

Many vendors can do all the things we need but, in some cases, it will be a bit more effort
to make it work. We started to work on a grid component ourselves and, after a while, we
decided to make it open source.

This is how Blazm was born. We had a few special requirements (not anything fancy), but
it required us to have to write a lot of code over and over again to make it work in a third-
party vendor component.

We learned so much from writing our component, and it is really easy to do. My
recommendation is not to always write your own components. It is much better to focus
on the actual business problem we are trying to solve.

For us, building a pretty advanced grid component taught us so much about the inner
working of Blazor.

Think about what you need and try out the different vendors to see what works best
for you, and perhaps it might be better to build the component yourself, at least in the
beginning, to learn more about Blazor.

https://github.com/AdrienTorris/awesome-blazor
https://www.twitch.tv/csharpfritz
https://github.com/FritzAndFriends/BlazorWebFormsComponents
https://github.com/FritzAndFriends/BlazorWebFormsComponents

278 Where to Go from Here

Summary
In this chapter, we looked at some of the things we have encountered during the time we
have been running Blazor in production. We also talked about where to go from here.

Throughout the book, we have learned how Blazor works and how to create basic
and advanced components. We implemented security with both authentication and
authorization. We created and consumed an API connected to a database.

We made JavaScript calls and real-time updates. We debugged our application and tested
our code, and last but not least, we looked at deploying to production.

We are now ready to take all this knowledge to the next adventure, the next app. I hope
you have had as much fun reading this book as I have had writing it. Being part of the
Blazor community is so much fun and we learn new things every day.

Thank you for reading this book, and please stay in touch. I would love to learn more
about the things you build!

Welcome to the Blazor community!

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

280 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

An Atypical ASP.NET Core 5 Design Patterns Guide

Carl-Hugo Marcotte

ISBN: 978-1-78934-609-1

• Apply the SOLID principles for building flexible and maintainable software

• Get to grips with .NET 5 dependency injection

• Work with GoF design patterns such as strategy, decorator, and composite

• Explore the MVC patterns for designing web APIs and web applications using
Razor

• Discover layering techniques and tenets of clean architecture

• Become familiar with CQRS and vertical slice architecture as an alternative to
layering

• Understand microservices, what they are, and what they are not

• Build ASP.NET UI from server-side to client-side Blazor

https://www.packtpub.com/product/an-atypical-asp-net-core-5-design-patterns-guide/9781789346091

Other Books You May Enjoy 281

Customizing ASP.NET Core 5.0

Jürgen Gutsch

ISBN: 978-1-80107-786-6

• Explore various application configurations and providers in ASP.NET Core 5

• Understand dependency injection in .NET and learn how to add third-party DI
containers

• Discover the concept of middleware and write your own middleware for ASP.NET
Core apps

• Create various API output formats in your API-driven projects

• Get familiar with different hosting models for your ASP.NET Core app

• Develop custom routing endpoints and add third-party endpoints

• Configure WebHostBuilder effectively for your web applications

https://www.packtpub.com/product/customizing-asp-net-core-5-0/9781801077866

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

282

http://authors.packtpub.com
http://authors.packtpub.com

Hi!

I am Jimmy Engström, author of Web Development with Blazor. Thank you so much for
picking up this book! I really hope you enjoyed reading this book and found it useful for
increasing your productivity and efficiency with Blazor.

It would really help me (and other potential readers!) if you could leave a review on
Amazon sharing your thoughts on Web Development with Blazor.

https://www.amazon.in/review/create-review/
error?asin=1-800-20872-3&

Your review will help me to understand what's worked well in this book, and what could
be improved upon for future editions, so it really is appreciated.

And please feel free to reach out if you have any questions!

Best Wishes,

 283

https://www.amazon.in/review/create-review/error?asin=1-800-20872-3&
https://www.amazon.in/review/create-review/error?asin=1-800-20872-3&

Index

Symbols
_Host (Blazor Server), Blazor

application 39-41
.NET

calling, from JavaScript 213
JavaScript, calling from 209

.NET 5 8

.Net, calling from JavaScript
about 213
instance method call 214-216
static .NET method call 213, 214

.NET CLI
reference link 34

.NET runtimes
types 8

A
Actions

adding 99, 100
admin interface

blog posts, editing 133-141

blog posts, listing 133-141
building 123-125
categories, editing 126-129
categories, listing 127, 129
making, reusable 198, 199
tags, editing 130-132
tags, listing 130-132

Angry Bots (Unity)
reference link 7

API
mocking 259-263

App component, Blazor application 43
App component, render modes

Server mode 40
ServerPrerendered mode 40
Static mode 40
WebAssembly mode 40
WebAssemblyPrerendered mode 40

authentication
implementing 160
testing 265, 266

authorization
adding 180
testing 265, 266

286 Index

B
binding

exploring 96
one-way binding 96-98
two-way binding 98, 99

Blazm
URL 276

Blazor
about 8
Database Context (DbContext),

adding to 66, 67
Blazor application

creating 23
development environment, setting up 20
setting up, on Linux 22
setting up, on macOS 21, 22
setting up, on Windows 20, 21

Blazor application, project structure
_host (Blazor Server) 39-41
about 34
App component 43
Bootstrap 44, 46
Index (WebAssembly) 42, 43
MainLayout 44
Program.cs 34
startup file 36-38

Blazor community 276
Blazor components

about 114
EditForm 115, 116
InputBase 116
InputCheckbox 117
InputDate 117
InputNumber 117
InputRadio 117
InputRadioGroup 117
InputSelect 117

InputText 117
InputTextArea 117

Blazor Mobile Bindings
about 16
reference link 17

Blazor Server
about 10
advantages 11
debugging 248, 250
disadvantages 11
implementing 227-229
real-time updates,

implementing 235-238
Blazor Server application

creating 23-27
Blazor Server Program.cs 35, 36
Blazor Server project

configuring 163-169
creating, with command line 33, 34

Blazor site
reloading 253, 254
reloading, limitations 254

Blazor WebAssembly
about 12, 13
advantages 15
debugging 250, 252
debugging, in browser 252
disadvantages 14
implementing 229-231
real-time updates,

implementing 238-243
versus Blazor Server 16

Blazor WebAssembly project
API, adding 192, 193
configuring 170
MyBlogWebAssembly.Client,

updating 175-180

Index 287

MyBlogWebAssembly.Server,
updating 170-175

blog
making, look like blog 201-203

Bootstrap
URL 44

Bootstrap, Blazor application 44, 46
browser storage

implementing 226
interface, creating 226, 227
shared, implementing 231-234

built-in component
exploring 105
focus, setting on UI element 105, 106
HTML head, influencing 106-109
 virtualization 110
virtualization 111, 112

bUnit 256

C
C

compiling, into WebAssembly 6
cascading parameters

using 90, 91
Cascading Style Sheets (CSS)

about 194
adding, to MyBlogServerSide 197
adding, to MyBlogWebAssembly.

Client 198
client

roles, adding to 181, 182
code

sharing 203, 204
command line

used, for creating Blazor
Server project 33, 34

using 33

components
about 10
creating, ways 70, 91-93
exploring 70
moving 188-190

components, in template
counter 71, 72
FetchData 73-77

components, writing methods
about 85
class, inheriting 86
in partial class 86
in Razor file 85
only code 87, 88

component under testing (cut) 258
Continuous Delivery (CD)

about 270
options 270

Continuous Deployment (CD) 270
Continuous Integration (CI) 270
counter component 71, 72
CSS isolation 205, 206
CSS/SASS

preparing 195-197
custom validation class attributes 120-123

D
data

storing, on server side 222
data annotations 118
database

deploying 270, 271
roles, adding to 182, 183
tables, adding to 160-163

Database Context (DbContext)
adding, to Blazor 66, 67

288 Index

data project
creating 50, 51
Database Context (DbContext),

creating 55-57
data classes, creating 52-55
interface, creating 58, 59
interface, implementing 59-65
migration, creating 57, 58
NuGet packages, adding 51, 52

data, storing in URL
about 223
query string, using 224
route constraints 224
uncommon scenarios 224, 225

DB Browser for SQLite
URL 182

dependency injection (DI)
about 82
scoped service, configuring 84
singleton service, configuring 83
transient service, configuring 84

directives
about 79
attribute, adding to page 80
class, inheriting 80
generics 81
interface, adding 80
layout, modifying for page 81
namespace, setting 81
route, setting 81
using statement, adding 82

Document Object Model (DOM) 5, 28
Doom

reference link 7
dotnet.wasm 13

E
EditForm

about 115, 116
events 115

Entity Framework
code-first approach 50
database-first approach 50

EventCallback
adding 99, 100

explicit Razor expressions 78
expression encoding 79

F
FetchData component 73-77
form elements

exploring 114

G
generics 81
GetBlogPostsAsync method 146

H
Highcharts 217
hosting options

about 271
Blazor Server, hosting 271
Blazor WebAssembly, hosting 271, 272
on IIS 272

HTTP Strict Transport
Security (HSTS) 37

Index 289

I
implicit Razor expressions 78
Index (WebAssembly), Blazor

application 42, 43
in-memory state container service

using 234
Internet Information Server (IIS) 272
Inversion of Control (IoC) 82

J
JavaScript

.NET, calling from 213
about 5
calling, from .NET 209
need for 208
testing 267

JavaScript, calling from .NET
about 209
global JavaScript method 209
JavaScript isolation method 210-212

JavaScript library
implementing 217-220

JSON Web Token (JWT) 171

L
languages, WebAssembly

reference link 7
Leaner Style Sheets (LESS) 194
learnings, from running Blazor

in production
about 273
concurrency problems, solving 275
errors, solving 275
memory problems, solving 274, 275
old browsers 276

lifecycle events
about 88
OnAfterRender 89
OnAfterRenderAsync 89
OnInitialized 89
OnInitializedAsync 89
OnParametersSet 89
OnParametersSetAsync 89
ShouldRender 89

Linux
Blazor application, setting up 22

local storage 226

M
macOS

Blazor application, setting up 21, 22
MainLayout, Blazor application 44
menu

making, useful 199-201
migration 57
mock API

implementing 260
MyBlogServerSide

CSS, adding 197
MyBlogServerSide project

cleaning up 186
MyBlog.Shared project

shared files, cleaning up 191
MyBlogWebAssembly.Client

CSS, adding 198
updating 175-180

MyBlog.WebAssembly project
API, setting up 187, 188

MyBlogWebAssembly.Server
updating 170-175

290 Index

O
Object Relational Mapping (ORM) 50
one-way binding 96-98

P
parameters

about 90
cascading parameters 90, 91

pre-Blazor time 4
Program.cs, Blazor application

about 34
Blazor Server Program.cs 35, 36
WebAssembly Program.cs 34, 35

Progressive Web Application (PWA) 30
protected browser storage 226

R
Razor code blocks 77, 78
Razor component 39
Razor page 39
Razor syntax

about 77
code blocks 77, 78
directives 79
explicit Razor expressions 78
expression encoding 79
implicit Razor expressions 78

RenderFragment
alert component, building 101-104
ChildContent 101
default value 101
using 100

render tree 10

roles
adding, from server 180, 181
adding, to client 181, 182
adding, to database 182, 183

route constraint 224

S
scaffolding

reference link 168
server

roles, adding from 180, 181
server side

data, storing 222
service

injecting 84
service, Web API

API controller, adding 145-150
database access, adding 144, 145
service, creating 144

session storage 226
SignalR 10
Single-Page Application (SPA) 14
Singleton 236
startup file, Blazor application 36, 37, 38
static files

adding 193
Syntactically Awesome Style

Sheets (SASS) 194

T
tables

adding, to database 160-163
test project

setting up 257-259
tests

writing 263, 264

Index 291

third-party component vendors 277
two-way binding 98, 99
TypeScript 5

U
URL

data, storing 223

V
validation

adding 118, 119
ValidationMessage component 119
ValidationSummary component 120

Visual Studio
URL 21

W
Web API

client, creating 150-157
service, creating 144

WebAssembly
about 5
C, compiling into 6
working 7

WebAssembly application
creating 28-32

WebAssembly Program.cs 34, 35
WebAssembly projects

reference link 7
WebSocket 27
WebWindow

about 16
reference link 16

Windows
Blazor application, setting up 20, 21

Z
ZX Spectrum emulator

about 15
reference link 15

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Foreword
	Contributors
	Table of Contents
	Preface
	Section 1:
The Basics
	Chapter 1: Hello Blazor
	Technical requirements
	Preceding Blazor
	Introducing WebAssembly
	Introducing .NET 5
	Introducing Blazor
	Blazor Server
	Blazor WebAssembly
	Blazor WebAssembly versus Blazor Server
	WebWindow
	Blazor Mobile Bindings

	Summary
	Further reading

	Chapter 2: Creating Your First Blazor App
	Technical requirements
	Setting up your development environment
	Windows
	macOS
	Linux (or macOS or Windows)

	Creating our first Blazor application
	Creating a Blazor Server application
	Creating a WebAssembly application

	Using the command line
	Creating a Blazor Server project using the
command line

	Figuring out the project structure
	Program.cs
	Startup
	Index/_host
	App
	MainLayout
	Bootstrap

	Summary

	Section 2:
Building an Application with Blazor
	Chapter 3: Introducing Entity Framework Core
	Technical requirements
	Creating a data project
	Creating a new project
	Adding NuGet packages
	Creating data classes
	Creating the Database Context
	Creating a migration
	Creating an interface
	Implementing the interface

	Adding the DbContext to Blazor
	Summary

	Chapter 4: Understanding Basic Blazor Components
	Technical requirements
	Exploring components
	counter
	FetchData

	Learning Razor syntax
	Razor code blocks
	Implicit Razor expressions
	Explicit Razor expressions
	Expression encoding
	Directives
	Understanding dependency injection
	Figuring out where to put the code
	Lifecycle events

	Parameters
	Cascading parameters

	Writing our first component
	Summary

	Chapter 5: Creating Advanced Blazor Components
	Technical requirements
	Exploring binding
	One-way binding
	Two-way binding

	Adding Actions and EventCallback
	Using RenderFragment
	ChildContent
	Default value
	Building an alert component

	Exploring the new built-in component
	Setting the focus of the UI
	Influencing HTML head
	Component virtualization

	Summary

	Chapter 6: Building Forms with Validation
	Technical requirements
	Exploring form elements
	EditForm
	InputBase<>
	InputCheckbox
	InputDate<TValue>
	InputNumber<TValue>
	InputSelect<TValue>
	InputText
	InputTextArea
	InputRadio
	InputRadioGroup

	Adding validation
	ValidationMessage
	ValidationSummary

	Custom validation class attributes
	Building an admin interface
	Listing and editing categories
	Listing and editing tags
	Listing and editing blog posts

	Summary

	Chapter 7: Creating an API
	Technical requirements
	Creating the service
	Adding database access
	Adding the API controller

	Creating the client
	Summary

	Chapter 8: Authentication and Authorization
	Technical requirements
	Implementing authentication
	Adding tables to the database
	Configuring the Blazor Server project
	Configuring the Blazor WebAssembly project

	Adding authorization
	Adding roles from the server
	Adding roles to the client
	Adding a role to the database

	Summary

	Chapter 9: Sharing Code
and Resources
	Technical requirements
	Cleaning up the project
	Setting up the API
	Moving the components
	Cleaning up the shared files
	Adding the API

	Adding static files
	CSS versus LESS versus SASS
	Preparing CSS/SASS
	Adding CSS to MyBlogServerSide
	Adding CSS to MyBlogWebAssembly.Client
	Making the admin interface more useable
	Making the menu more useful
	Making the blog look like a blog
	Sharing problems

	CSS isolation
	Summary

	Chapter 10: JavaScript Interop
	Technical requirements
	Why do we need JavaScript?
	.NET to JavaScript
	Global JavaScript (the old way)
	JavaScript Isolation

	JavaScript to .NET
	Static .NET method call
	Instance method call

	Implementing an existing JavaScript library
	Summary

	Chapter 11: Managing State
	Technical requirements
	Storing data on the server side
	Storing data in the URL
	Route constraints
	Using a query string
	Scenarios that are not that common

	Implementing browser storage
	Creating an interface
	Implementing Blazor Server
	Implementing WebAssembly
	Implementing the shared

	Using an in-memory state container service
	Implementing real-time updates on Blazor Server
	Implementing real-time updates on Blazor WebAssembly

	Summary

	Section 3:
Debug, Test, and Deploy
	Chapter 12: Debugging
	Technical requirements
	Making things break
	Debugging Blazor Server
	Debugging Blazor WebAssembly
	Debugging Blazor WebAssembly in
the web browser
	Hot reload (almost the real thing)
	Summary

	Chapter 13: Testing
	Technical requirements
	What is bUnit?
	Setting up a test project
	Mocking the API
	Writing tests
	Authentication
	Testing JavaScript

	Summary

	Chapter 14: Deploy to Production
	Technical requirements
	Continuous delivery options
	Deploying the database
	Hosting options
	Hosting Blazor Server
	Hosting Blazor WebAssembly
	Hosting on IIS

	Summary

	Chapter 15: Where to Go
from Here
	Technical requirements
	Learnings from running Blazor in production
	Solving memory problems
	Solving concurrency problems
	Solving errors
	Old browsers

	Next steps
	The community
	The components

	Summary
	Why subscribe?

	About Packt
	Other Books You May Enjoy
	Index

